Table of Contents

Acronyms .. 2

Tables ... 3

Figures ... 3

Acknowledgments ... 5

1 Introduction .. 6

1.1 Key Features ... 6
1.2 Overview of the PSAT Outputs .. 8
1.3 Data Sources .. 9
1.4 Guidance Material ... 9
1.5 Structure of the User Guide .. 10

2 Entering Project Information and Reading the Outputs .. 11

2.1 Portfolio Creation .. 11
2.2 Project Input Screens ... 13
2.3 Entering Project Information .. 14
2.4 Filling in the Basic Project Data ... 14
2.5 Answering the Parameter Questions ... 17
2.6 Reading the PSAT Outputs ... 22
2.7 Concluding on the Suitability of a Project ... 30

3 Pipeline Analytics ... 31

3.1 Dashboard ... 32
3.2 Viability Analysis ... 34
3.3 Customized Analysis .. 35
3.4 Ranking Projects .. 38

4 Scoring Methodology .. 40

4.1 Question Score ... 40
4.2 Sub-Parameter Score .. 41
4.3 Parameter Score ... 46
4.4 Overall Score ... 47

5 Customizing the PSAT .. 48

5.1 Basic Customization ... 49
5.2 Customizing Major Weights .. 50
5.3 Customizing Constraints .. 51
5.4 Micro Customization ... 54
5.5 Things to Remember While Customizing the PSAT ... 56

6 Annexes ... 57

6.1 Explanatory Notes .. 57
6.2 Data Tables and Troubleshooting ... 82
Acronyms

Capex capital expenditure
DSCR debt service coverage ratio
EPC engineering procurement and construction
eIRR economic internal rate of return
GDP gross domestic product
GHG greenhouse gas
IRR internal rate of return
ISO International Organization for Standardization
N/A not applicable
NPV net present value
O&M operations and maintenance
PFS preliminary feasibility study
PPP Public-Private Partnerships
PSAT Project Screening and Analytics Tool
PSB public sector benchmark
VFM value for money
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Rules for Answering Questions</td>
<td>19</td>
</tr>
<tr>
<td>Table 2: Sample Responses to a Question on Financing Risk</td>
<td>21</td>
</tr>
<tr>
<td>Table 3: Sample Responses to a Question on Environmental Sustainability</td>
<td>22</td>
</tr>
<tr>
<td>Table 4: Scores Assigned to Drop-Down Menu Responses</td>
<td>40</td>
</tr>
<tr>
<td>Table 5: Sub-Parameter Score Constraints</td>
<td>41</td>
</tr>
<tr>
<td>Table 6: Simulation of the Sub-Parameter Constraint Algorithm</td>
<td>42</td>
</tr>
<tr>
<td>Table 7: PSAT Customization Levels</td>
<td>48</td>
</tr>
<tr>
<td>Table 8: Trigger Conditions for Constraining a Parameter Score</td>
<td>53</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1: PPP Project Screening and Analytics Tool Features</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2: Main Menu</td>
<td>12</td>
</tr>
<tr>
<td>Figure 3: Creating a New Project</td>
<td>13</td>
</tr>
<tr>
<td>Figure 4: Steps for Screening a Project Using the PSAT</td>
<td>14</td>
</tr>
<tr>
<td>Figure 5: Filling in the Basic Project Data</td>
<td>15</td>
</tr>
<tr>
<td>Figure 6: Layout of the Parameter Screen</td>
<td>18</td>
</tr>
<tr>
<td>Figure 7: Sub-Parameter Scores with Thermal Bars</td>
<td>20</td>
</tr>
<tr>
<td>Figure 8: Dashboard: Overall and Parameter Results</td>
<td>23</td>
</tr>
<tr>
<td>Figure 9: Flowchart for Reading the PSAT Outputs</td>
<td>24</td>
</tr>
<tr>
<td>Figure 10: Dashboard: Overall Tab</td>
<td>24</td>
</tr>
<tr>
<td>Figure 11: Color Coding of the Speedometer Dial</td>
<td>25</td>
</tr>
<tr>
<td>Figure 12: Dashboard: Overall Tab, Screening Comments</td>
<td>25</td>
</tr>
<tr>
<td>Figure 13: Dashboard: Prerequisites and Deal Breakers</td>
<td>26</td>
</tr>
<tr>
<td>Figure 14: Dashboard: Parameter Tab</td>
<td>27</td>
</tr>
<tr>
<td>Figure 15: Dashboard: Sub-Parameter Scores</td>
<td>28</td>
</tr>
<tr>
<td>Figure 16: Dashboard: Composite Variable</td>
<td>29</td>
</tr>
</tbody>
</table>
Figure 17: Access Pipeline Analytics ... 31
Figure 18: Pipeline Analytics Dashboard ... 32
Figure 19: Project Dashboard ... 34
Figure 20: Ease of Implementation ... 35
Figure 21: Ease of Implementation Subcomponents ... 35
Figure 22: Filtering Data .. 36
Figure 23: Example for Filtering Data ... 37
Figure 24: Cluster Charts ... 37
Figure 25: Example for Cluster Charts ... 38
Figure 26: Ranking Projects ... 39
Figure 27: Download Data ... 39
Figure 28: Scoring Methodology .. 40
Figure 29: Calculating the Environmental Sustainability Score 43
Figure 30: Calculating the Economic Prefeasibility Score 44
Figure 31: Calculating the Financial Prefeasibility Score 44
Figure 32: Calculating the Risk in Delay in Land Acquisition Score 45
Figure 33: Calculating the Foreign Exchange Risk Score 45
Figure 34: Calculating the Quantification of Fiscal Support Score 46
Figure 35: Computation Flow of the PSAT ... 48
Figure 36: Entering Tool Customization .. 49
Figure 37: Cells for Basic Customization .. 49
Figure 38: Cells for Customizing Major Weights .. 50
Figure 39: Cells for Customizing Constraints .. 52
Figure 40: Cells for Altering Sub-Parameter Constraints 52
Figure 41: Cells for Altering Parameter Constraints ... 53
Figure 42: Cells for Altering Overall Score Constraints 54
Figure 43: Cells for Altering Question Weights ... 55
Figure 44: Cells for Altering Complexity Score Weights 56
Acknowledgments

This User Guide was prepared as an accompaniment to the Public-Private Partnerships Screening and Analytics Tool (PSAT) by a team led by Shyamala Shukla, Task Team Leader and Senior Public-Private Partnerships Specialist, and consisting of Elena Timusheva, co-Task Team Leader and Public-Private Partnerships Specialist, and Rakesh Bangera, Senior Consultant.

Imad Fakhoury, Director, Infrastructure Finance, Public-Private Partnerships and Guarantees (IPG), and Fatouma Toure Ibrahima, Practice Manager, Public-Private Partnerships Group, provided valuable guidance.

The World Bank team would like to thank the various stakeholders from Rwanda, Kenya, Uganda and other countries whose feedback on the first iteration of the User Guide during hands-on sessions provided key inputs to the development of the PSAT as well as this iteration of the User Guide. The team also thanks Sandra Gain, for editorial assistance, Pablo Armando Alfaro Chavez, for layout and formatting, and Prashant Sharma for guidance on overall presentation. The work is funded by IPG and Public-Private Infrastructure Advisory facility (PPIAF), which is a multidonor trust fund that helps developing-country governments strengthen policies, regulations, and institutions that enable sustainable infrastructure with private-sector participation. For more information on PPIAF visit: http://ppiaf.org.
1 Introduction

Lack of fiscal space and the quest for better efficiency in projects and programs have led to increasing interest in public-private partnerships (PPPs) globally. PPPs are more complex than similar publicly procured projects and require upfront project development expenses that could be significant. Therefore, public entities seek to understand as much as possible about each project before undertaking expensive studies, project structuring, and procurement, which brings to the fore the need for good upstream project selection techniques and methodologies.

Review of early-stage PPP screening practice in various countries indicates that a mix of drivers determines PPP project success, often making it difficult for policy makers and practitioners to understand and select projects for further development as PPPs. Complete reliance on quantitative criteria has not worked well, with the result that in the past few years, countries have been opting to combine these with qualitative aspects. Often, screening methodologies have been created based on a country’s policy drivers and areas of focus. Although countries follow different methodologies for screening projects, there are certain common principles used by all.

The Project Screening and Analytics Tool (PSAT, or Tool), which was developed by the Infrastructure Finance, Public-Private Partnerships and Guarantees global practice at the World Bank, is a decision-making tool that builds on an earlier version of the Infrastructure Finance, Public-Private Partnerships and Guarantees Tool. It is a Microsoft Excel Visual Basic–based tool that can be used by countries for screening and prioritization of PPP projects. It is a reasonably robust early screening mechanism to help countries that currently do not use any methodology or use more unstructured or highly subjective assessments determine whether a project is suitable for potential procurement as a PPP. The PSAT can analyze and store information on a large number of projects forming a PSAT database. The Pipeline Analytics functionality of the PSAT can compare, analyze, and prioritize several hundred projects. The PSAT can also be used as a checklist at any stage of project development prior to initiation of procurement, to ensure the soundness of the project.

1.1 Key Features

The PSAT is a Microsoft Excel Visual Basic–based tool for screening and prioritizing projects to determine their potential suitability for PPP procurement (figure 1). The PSAT evaluates a project on six Parameters: Strategic Suitability, Preliminary Feasibility, Risk Assessment, PPP Suitability, Fiscal Affordability, and Institutional Capability. The PSAT contains structured questions organized under 25 Sub-parameters within the six Parameters. The user can record responses to questions based on available project information, preferably based on prefeasibility studies or an outline business case prepared for the project. In the absence of such studies, initial concept–level information can also be used. The PSAT is based on decision tree logic, which generates questions based on the inputs provided in the Basic Project

1 The PPP Project Screening Tool developed in 2017.
Data screen. The PSAT has the capability to assess the project using a combination of qualitative and quantitative information where such information is provided.

The PSAT can store information on a large number of projects. The screening results for these projects can be retrieved and modified as project preparation progresses and updates become available. The Pipeline Analytics functionality of the PSAT helps compare, analyze, and prioritize multiple projects based on the screening results.

The following are some of the key features of the PSAT:

- Precalibrated tool. The PSAT is a precalibrated tool that can be operated easily by users. The User Guide provides easy-to-understand guidance on operating it. The Tool is also supported by an online e-learning course that discusses the key principles for PPP Suitability and demonstrates the use of the PSAT for screening, analyzing, and prioritizing PPP projects with examples and case studies.

- Structured in question and answer format. The user provides responses to simple questions based on available project information. Every question is assigned a default weight that, among others, determines the Overall project score.

- Qualitative and quantitative assessment. The PSAT uses a combination of qualitative and quantitative inputs to evaluate projects for their potential for development and implementation as PPPs. The PSAT is best applied at the concept stage or after a prefeasibility study has been conducted. However, it can also be used at the feasibility stage as a readiness checklist to ensure that the project is ready to go to tender.

- Composite variables. The PSAT combines key Parameters and Sub-parameters to provide an indication of the viability of the project from various project development perspectives.

- Compare, analyze, and prioritize projects. The PSAT stores information on screened projects and helps compare, analyze, and prioritize projects in the portfolio through its Pipeline Analytics functionality.

- Flexibility to customize. The PSAT screening algorithm can be customized to cater to specific requirements. The default settings should be used to the extent possible as these are tried and tested and have been set based on experts’ views.

- Strengthened project preparation. The PSAT ensures that all major preparatory activities and actions needed for a successful PPP are evaluated and concerns are highlighted to strengthen the project preparation process.

- Improved quality and success rate of PPPs. The PSAT can improve the quality and success rate of projects by ensuring that only suitable projects enter the detailed feasibility stage.
Although it comes with multiple features, the PSAT does not do the following:

1. **The PSAT is not a substitute for a full feasibility analysis.**

 The PSAT helps users screen projects during the early stages of the project, using available project information. A favorable score indicated by the Tool should be followed up with detailed studies.

2. **The PSAT does not compute economic or financial viability, or value for money.**

 The Tool cannot be used for calculating the economic or financial viability indicators of the project. These assessments will be carried out separately and feed into the Tool for the purpose of assessing the suitability of the project as a potential PPP.

3. **The PSAT does not verify the information provided by the user.**

 The Tool cannot substantiate, verify, or validate the information provided by the user. The accuracy of the analysis will depend on the accuracy of user inputs.

1.2 Overview of the PSAT Outputs

Based on the responses to the questions in the seven input screens (Basic Project Data and six Parameters), the PSAT generates various outputs at the individual project and portfolio levels. At the project level, the PSAT delivers outputs in the form of scores for each Parameter, Sub-parameter, Composite variable (such as Ease of Implementation, Environmental and Social Sustainability, and Commercial Potential and Fiscal Affordability), as well as the PSAT Overall score. The PSAT Overall score
ranges on a scale of 0 to 5 and includes a descriptor, such as deficient, weak, adequate, or strong, along with modified result types, for example, “moderately weak” or “very weak.” Projects with PSAT Overall scores between 2.5 and 5, inclusively, are considered suitable for PPP. However, the score is only an indicator. A user should carefully consider all the project outputs holistically (that is, paying attention to the identified deficiencies in the project connected with potential Deal breakers and questions with the responses “uncertain” and/or “skipped,” which suggest areas for improving the project) to reach a conclusion on the suitability of the project for PPP. These outputs are captured in reports (Project Summary Report and Detailed Project Report) that the PSAT allows for downloading in PDF, Word, and Excel formats.

At the portfolio level, the PSAT delivers insights into the portfolio composition and dynamics, allowing to filter, sort, rank, and prioritize the projects by different variables. The results are visually supported by charts and graphs. The lists of ranked and prioritized projects, as well as the entire portfolio of projects entered into the PSAT, can be exported into an Excel file for further analysis.

1.3 Data Sources

The user will need to access the following sources of information to respond to the questions in the PSAT:

- Preliminary Feasibility study reports, outline business cases, or project concept notes
- Sector practices and institutional information
- PPP-related policy, laws, and regulations in the country
- Information on similar projects implemented in the past in the country or region
- Information on banking and lending regulations and practice
- Information on key macroeconomic variables.

1.4 Guidance Material

The PSAT is supported by step-by-step guidance with substantive explanations for the six Parameters, the rationale behind their use, as well as detailed guidance on the use of the Tool:

User Guide. A detailed guide (the current document) that provides step-by-step instructions on the use of the PSAT. This document also delves into the mechanics of the PSAT and guides the user to customize the Tool to cater to specific requirements.

Online e-learning course. Users can also take an online e-learning course, which is available on the World Bank Group Open Learning Campus webpage. The course discusses the key principles for PPP Suitability and demonstrates the use of the PSAT for screening, analyzing, and prioritizing PPP projects with detailed examples and case studies.
1.5 Structure of the User Guide

This User Guide is organized in six sections:

- **Section 1: Introduction**: discusses the objective and context of the PSAT and defines the contents and structure of the User Guide.
- **Section 2: Entering Project Information and Reading the Outputs**: provides guidance on using the Tool to screen a project.
- **Section 3: Pipeline Analytics**: provides guidance on using the Pipeline Analytics functionality of the PSAT to compare, analyze, and prioritize multiple projects.
- **Section 4: Scoring Methodology**: provides the details of the scoring methodology.
- **Section 5: Customizing the Tool**: provides guidance on customizing the PSAT.
- **Section 6: Annex**: includes notes for users, detailed instructions for entering data in the Basic Project Data screen, explanation of the Parameters, data tables with information on the precalibrated values in the scoring algorithm, troubleshooting tips for addressing commonly observed issues, and so forth.
2 Entering Project Information and Reading the Outputs

The Tool has a main menu (figure 2) that includes the following options:

1. **Portfolio creation.** This allows the user to enter information on a new project (under “Create New Project”) or select a project from the PSAT database to review the inputs or update them (under “Project Selection”).

2. **Outputs.** Following completion of project inputs, the results for each project can be displayed using the “Dashboard” and “Report Generator” tabs.

3. **Pipeline Analytics.** This provides the option for the user to compare, analyze, and rank the portfolio of projects.

4. **Tool Customization.** This menu option provides access to the hidden Excel sheets of the PSAT where a user can customize the Tool. The central coordinating unit or PPP unit in each country can customize the Tool based on their policy priorities if these are different from the default version. There is also the option to lock the selected (default or customized) version of the Tool prior to use.

The following subsections delineate the composition, interface, and working of the Tool.

2.1 Portfolio Creation

The “Create New Project” and “Project Selection” menu options, as shown in figure 2, allow the creation of new projects and selection of existing projects for data entry and evaluation, respectively.
1. **Project Selection**

This option allows the user to select any existing project from the PSAT to review or update the information. On clicking the option, a drop-down list will be displayed from which the user can select the desired project by scrolling down. Alternatively, the user can type the first letter of the project name to find the project. The drop-down list displays project names that start with numerals followed by project names that start with letters.

The user must select a project and choose “Enter” to access the project. The user can also delete projects saved in the PSAT using this option.

2. **Create New Project**

This option allows the user to create a new project and add it to the portfolio. The user types in the name of the project in the dialogue box and selects “Enter” to access the screens for entering information on the project (figure 3).
2.2 Project Input Screens

The Basic Project Data and the six Parameters are the input screens for the project. The Basic Project Data screen seeks basic information about the project on nine major aspects. Its fields are linked to decision trees that adapt the questions in the Parameter screens for the project. Hence, the Basic Project Data screen must be filled in completely before accessing the Parameter screens.

The six Parameter screens are organized as follows:

I. **Strategic Suitability**: assesses the suitability of the project in terms of the country’s national agenda, service need, service delivery options, and scoping.

II. **Preliminary Feasibility**: analyzes the technical, environmental, social, economic, financial, and legal prefeasibility of the project.

III. **Risk Assessment**: assesses the major risks applicable to the project. These include land acquisition risk, financing risk, design and construction risk, operations and maintenance risk, market and demand risk, offtaker risk, foreign exchange risk, and environmental and social risk.

IV. **PPP Suitability**: assesses the value for money (VFM) and market appetite for the project.

V. **Fiscal Affordability**: assesses the affordability of the project from the government’s perspective based on the extent and nature of fiscal support and its quantification.

VI. **Institutional Capability**: assesses the institutional capacity, preparedness, and project execution capability of the contracting agency responsible for the project.
The questions under the six Parameters are organized under 25 thematic Sub-parameters and generated based on information provided by the user in the Basic Project Data screen. The user must select the appropriate response to each question from a list of responses that includes yes, no, uncertain, skip, and N/A.

For guidance on providing inputs, please refer to the explanatory notes in section 6.1 of this User Guide. Explanatory notes with guidance for answering questions are also included in the Tool and they can be accessed by clicking on the “Learn More (!)” link displayed below the questions.

2.3 Entering Project Information

The design of the Tool presumes that a fair level of work on the project has already been done, including but not limited to prefeasibility-level studies including technical, economic, financial, legal, and environmental and social prefeasibility assessments; site checks; fiscal and budget checks; political economy considerations; articulation of need for the project; market sounding; preliminary risk analysis; qualitative VFM check; and so on. Prior to applying the PSAT to a project, the user must study project-related documentation and conduct interviews with the contracting agency and other stakeholders to obtain complete understanding of the project.

The user will need to access a wide range of project-related information that may not be available to a single person. The user could form an expert group or committee of relevant officials to undertake the screening exercise. The expert group could include senior officials from the contracting agency; PPP unit; finance ministry; budget, debt, and risk management units; and technical experts, advisors, economists, environment and procurement experts, and consultant teams with a variety of expertise, among others.

As a first step, the user could perform a pilot run on the PSAT by entering project-related information in the Basic Project Data screen and generating the Detailed Output Report using the Report Generator option. The user could use the questions in the Detailed Output Report for discussions with the expert group and/or project stakeholders to obtain more information.

After entering responses in all the fields of the Basic Project Data and Parameter screens, the user can undertake the project screening exercise. The steps for screening a project using the PSAT are displayed in figure 4.

Figure 4: Steps for Screening a Project Using the PSAT

![Image](image_url)

2.4 Filling in the Basic Project Data

The user can start entering the data in the Basic Project Data screen (figure 5) after creating the project. The initial section of the Basic Project Data screen consists of the following generic project information:
• Name of the implementing agency
• Stage in project development: use the drop-down menu and select CN for concept note, PA for preliminary analysis, PFS for prefeasibility study, or FS for feasibility study stages
• Date of submission of the project for screening
• Whether the project is a privately initiated proposal, that is, an unsolicited project, or is being proposed for development by the implementing agency.

The user must fill in the project-related information and scroll down to complete all the input fields from A to I on the screen. The user may refer to the explanatory notes in the annex, section 6.1.2, for detailed instructions on filling in the Basic Project Data screen.

A. Project profile. The following information should be provided based on the studies available for the project and the user’s knowledge of the project from other available sources:

• Project location
• Sector (selected from the options in the drop-down menu according to the convention for classifying projects in the country)
• Project type (selected from the drop-down menu consisting of the following options: Construction; Construction, Operations and Maintenance; and Operations and Maintenance)
• Currency (choose between USD, Euro or Local currency from the drop-down list)
• Estimated cost of the project in the selected currency.

Figure 5: Filling in the Basic Project Data

B. Prerequisites. These are conditions that relate to Strategic Suitability, Economic Prefeasibility, and Legal Prefeasibility and need to be fulfilled prior to proceeding with the assessment of a project. Providing a “no” response to any of the Prerequisites will trigger a warning and limit the PSAT Overall score to zero. The user must address the issue before proceeding with the screening
process. The user will be able to proceed with the evaluation of the project and view the Parameter scores but will not be able to obtain an Overall score. The objective behind enabling the Parameter scores is to give the user an indication of the strengths and weaknesses of the project and allow the user to identify other areas of concern that could be addressed at an early stage.

C. **Revenue profile.** Seeks information on the main source of revenues for the project—user charges, availability payments, or a combination of user charges and availability payments (hybrid payments). The user must indicate the share (in percent) of availability payments in the total revenue from the project if the option of hybrid payments is selected.

D. **Government support.** Checks for the applicability of government support for the project and evaluates the impact of direct fiscal commitments and contingent liabilities on the Fiscal Affordability of the project from the perspective of the government. The user must select a yes/no response from the options, depending on the estimation or expectation of government support for the project. The user must indicate direct commitments by the government and contingent liabilities as a percentage of gross domestic product (GDP) if “yes” is selected.

E. **Land status.** Seeks information on the land required for the project, such as the status of availability of land, amount of land to be procured, number of potential landowners for the balance of land to be procured, and information on the agency responsible for procuring the land.

F. **Value for money—quantitative assessment.** The user must provide the results of the VFM assessment of the project in this section. The user must provide the project’s VFM and threshold VFM as a percentage.

G. **Return expectations.** The user must provide the return expectations from the project in terms of its internal rate of return (IRR), debt service coverage ratio (DSCR), and economic internal rate of return (eIRR), along with their respective stress and threshold numbers, in this section.

H. **Foreign exchange risk profile.** This section checks for the applicability of foreign exchange risk in the project. It also requires information on the depreciation of national currency in the preceding five-year period with respect to the benchmark currency.²

I. **Climate Change and Resilience profile.** This section checks for the potential impact of the completed project on climate change and the project’s resilience to long-term climate change and hazards.
 - **Climate change.** The user must provide inputs related to expected reduction in greenhouse gas emissions once the project is completed, from the drop-down menu, which provides the following options: (1) Net carbon negative, (2) Carbon neutral, (3) Potential reduction possible, (4) None of the above, and (5) Not used.
 - **Resilience.** The user must provide inputs related to the project’s expected resilience and adaptability to long-term climate change and hazards, from the drop-down menu, which provides the following options: (1) Project has potential for recovery from previous

² The benchmark currency is assumed to be the currency in which the project is expected to be financed. When financing is expected as a combination of foreign currencies, it is good practice to use historical estimates based on a basket of currencies.
adverse effects, (2) Highly resilient and adaptive project, (3) Moderately resilient to climate changes and hazards, (4) None of the above, and (5) Not used.

The user must provide quantitative data in sections D, E, F, G, and H. This information needs to be retrieved from available project studies and reports. The user must provide “0” as input into these cells if information is not available. The PSAT will screen the project based on qualitative information only if quantitative information is not provided by the user. After completing all the data fields in the Basic Project Data, click “Next” to enter the Parameter screens for the project.

2.5 Answering the Parameter Questions

The user needs to become familiar with the layout of the Parameter screen before filling in the responses to the questions. The Parameter screen is organized as shown in figure 6.
Figure 6: Layout of the Parameter Screen

1. Menu (three parallel bars)
2. Multiple-choice questions section
3. Parameter tabs
4. Real-time scores: Parameter and Sub-parameter (once a user hovers over the thermal bar)
5. Position indicator

Menu

The three parallel bars in the top left corner contain the menu options of useful links. To access them, a user should hover the mouse over the bars. The menu includes operational links such as save and exit from the screen. The user can access the Dashboard for the project by clicking on the Parameter results link on the menu. The operating instructions for screening a project will be displayed when the user clicks on the instructions link.

Multiple-Choice Questions Section

This section displays the questions for the Parameter. The questions are arranged under Sub-parameters. The user must respond to the questions only after filling in the Basic Project Data screen. The user must do the following:

(i) Serially answer the questions starting from the top and cover all questions. The user can scroll down using the right side of the screen to access all the questions.
(ii) Choose the most appropriate responses to questions from the options available. The user must provide a response to each question based on the rules in table 1.

Table 1: Rules for Answering Questions

<table>
<thead>
<tr>
<th>Response</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>User agrees with the statement.</td>
</tr>
<tr>
<td>No</td>
<td>User disagrees with the statement.</td>
</tr>
<tr>
<td>Uncertain</td>
<td>Data and analysis may be available; however, the response to the question is neither a definite no nor a definite yes.</td>
</tr>
<tr>
<td>Skip</td>
<td>Implies that the question applies to the project, but there is insufficient information to make an informed response.</td>
</tr>
<tr>
<td>N/A</td>
<td>Implies that the question does not apply to the project.</td>
</tr>
</tbody>
</table>

(iii) Questions in red font are potential Deal breaker questions. Skipping any of the Deal breaker questions, marking them as uncertain, or responding to them in negative will reduce the Overall score.

(iv) Optional: the user may add notes or comments (in addition to responding to the question) in the comments box next to the multiple-choice responses. It is highly desirable that users add notes with substantiating information for each response.

(v) Click on the “Next” button at the end of the Parameter questions to access the questions under the next Parameter or click on the relevant Parameter listed on the left panel of the screen (see the next section, on Parameter tabs).

The user must follow steps (i) to (v) above for Parameters one to six listed on the left panel of the screen:

1. Strategic Suitability
2. Preliminary Feasibility
3. Risk Assessment
4. PPP Suitability
5. Fiscal Affordability

Parameter Tabs

The Parameter tabs on the left panel of the screen allow the user the flexibility to move from one Parameter to another. A dark color background under the Parameter name indicates the current Parameter displayed on the screen. The user ideally must move sequentially from the first Parameter to the last Parameter. This will ensure that all questions are answered. The user may miss answering some questions if they hop from one Parameter to another while screening the project for the first time. Responses to all questions in the Parameter screens must be reviewed if a change is made to any of the entries in the Basic Project Data.
Parameter Score
The thermal bar at the bottom left panel displays the Parameter score in real time, allowing a user to assess the impact of each response on the Parameter and Sub-parameter scores. Hovering the mouse over the score will display the Sub-parameter scores along with thermal bars, as shown in figure 7.

Figure 7: Sub-Parameter Scores with Thermal Bars
![Sub-Parameter Scores with Thermal Bars]

Clicking on the link “Click for areas that need improvement” displays the questions that have scored low in the screening. This link is displayed only if any question has scored low, to help the user understand the areas for improving the suitability of the project for PPP.

Position Indicator
The seven-step, color-coded position indicator changes to blue as the user moves from the Basic Project Data screen to the Parameter screens. The position indicator is read along with the highlighted Parameter on the left panel of the screen. For example, three colored steps on the top panel indicates that the user is on the Preliminary Feasibility screen.

2.5.1 Examples: Selecting the Right Responses to the Questions
This section provides two examples to guide the user in responding to questions in the PSAT. The user must carefully read each question and provide a response; answering “yes” is considered a positive answer for most of the questions in the PSAT. However, there are some questions for which answering “no” is considered a positive response. The user shall provide responses according to the rules listed in table 1, that is, answer “yes” if the user agrees with the statement, and answer “no” if the user disagrees with the statement, and so on. The algorithm in the PSAT normalizes the response and will score it appropriately in the context of the question.
EXAMPLE 1. Have similar PPP projects been financially closed in the country or region?

This question is from the Sub-parameter Financing Risk under the Risk Assessment Parameter. To get clarity on the question, the user may refer to the explanatory note by clicking on Learn More (!) below the question.

Explanatory Note: Financing Risk

Financing Risk refers to the risk that sufficient finance will not be available for the project at reasonable cost (for example, due to changes in market conditions or credit availability), resulting in delays in a project’s financial closure. This will involve an assessment of financial closure of similar projects in the country or region, financiers who may be interested in PPPs, and appraisal of other potential factors that may delay or impact raising finances for the project in a timely manner.

Based on the explanatory note, the user may select their response from table 2.

Table 2: Sample Responses to a Question on Financing Risk

Question: Have similar PPP projects been financially closed in the country or region?

<table>
<thead>
<tr>
<th>Response</th>
<th>Basis for selecting the response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>If similar projects in the country or region have been financially closed successfully.</td>
</tr>
<tr>
<td>No</td>
<td>If similar projects have not been financially closed in the country or region.</td>
</tr>
<tr>
<td>Uncertain</td>
<td>If the user has mixed information on financial closure of similar projects and is unable to answer the question as a definite “yes” or definite “no.”</td>
</tr>
<tr>
<td>Skip</td>
<td>The user does not have any information on financial closure of similar projects and is unable to provide a response.</td>
</tr>
<tr>
<td>N/A</td>
<td>If the project does not require financing from the PPP partner.</td>
</tr>
</tbody>
</table>

EXAMPLE 2. Will the project have any significant negative impact on natural resources or protected land?

This question is from the Sub-parameter Environmental Sustainability under the Preliminary Feasibility Parameter. This question is also a potential Deal breaker question; hence, a negative response, that is, a “yes” response in this case, will trigger a warning on the Dashboard. To get clarity on the question, the user may refer to the explanatory note by clicking on Learn More (!) below the question.

Explanatory Note: Environmental Sustainability

Any potential negative impact on the environment, especially on natural resources such as bodies of water or protected land such as forests, and impact on the air, including potential unmanageable emissions, must be identified early. Delays in obtaining forest, environmental, and wildlife clearances and so forth from the respective departments should also be factored in, as they may lead to significant delays during the implementation stage. Environmental prefeasibility is particularly critical in the case of development of power plants based on conventional fuels, setting up ports to handle hazardous or chemical cargo, or industrial parks or waste treatment facilities.

Based on the explanatory note, the user may select their response from table 3.
Table 3: Sample Responses to a Question on Environmental Sustainability

Question: Will the project have any significant negative impact on natural resources or protected land?

<table>
<thead>
<tr>
<th>Response</th>
<th>Basis for selecting the response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>If the project is likely to have a significant negative impact on the environment based on the initial environmental impact assessment and it may lead to significant delays during the implementation stage.</td>
</tr>
<tr>
<td>No</td>
<td>If the project would not have any significant negative impact on the environment based on the initial environmental impact assessment and no delays are expected during the implementation stage. Note that answering “no” is a positive response to this question.</td>
</tr>
<tr>
<td>Uncertain</td>
<td>If the user has information on the environmental impact but is unable to answer the question with a definite “yes” or “no,” as the information is inadequate or they are unable to reach a conclusion on significant negative impact and delays during the implementation stage.</td>
</tr>
<tr>
<td>Skip</td>
<td>If no initial environmental impact assessment has been conducted for the project and/or there is very low understanding of the negative impact on the environment.</td>
</tr>
<tr>
<td>N/A</td>
<td>If existing government notifications do not require environmental impact assessments to be conducted on the project. For example, approved development plan roads in urban areas do not require environmental approvals, as the development plan approval process includes environmental impact assessments at the city level. Another example is housing or township projects below a threshold size in urban areas that are exempted from environmental approvals.</td>
</tr>
</tbody>
</table>

Helpful Tip. The default response to a question in the PSAT is the response that will provide the best score for the question. Hence, it is very important not to miss answering any question, as the user may risk presenting a higher screening score for the project.

2.6 Reading the PSAT Outputs

Following completion of inputs into the Basic Project Data and Parameter screens, the summary of project results can be accessed using the “Dashboard” and “Report Generator” options in the main menu (figure 2).

Dashboard

The Dashboard summarizes the project analysis and displays the results, as shown in figure 8. The output includes three sets of scores: Overall score, Parameter scores, and Sub-parameter scores. In addition, the Dashboard provides an overall assessment of the project, displaying the areas (Sub-parameters) that need to be addressed under each Parameter. It also displays a summary of the Prerequisites and potential Deal breakers, with color-coded responses. The user can access the Dashboard for the project from the main menu or the Parameter screen by using the “Parameter results” link by hovering over the three parallel bars in the top left corner.
Report Generator

The Report Generator option provides two types of reports: the Project Summary Report, which aggregates the Dashboard information for the project, and the Detailed Output Report, which aggregates all the responses and inputs provided by the user, including any comments to substantiate or qualify the answers. These reports can be printed in Word, Excel, and PDF formats.

Approach to Interpreting Results

The PSAT outputs include a large set of information that is useful for analyzing a project. The information needs to be analyzed in detail to conclude on the suitability of a project for PPP. The approach to interpreting results includes the following:

1. Understanding the Overall score and comments
2. Analyzing the Parameter scores
3. Assessing Sub-parameter scores and Composite variables (Composite viability indicators) to understand the viability of the project.

When reading the PSAT outputs, please keep in mind that the quality of the inputs impacts the quality of the outputs. The outputs will be impacted by factors such as the number of skipped answers, questions marked uncertain, and so forth. The flowchart in figure 9 displays the process of reading the PSAT outputs.
2.6.1 Understanding the Overall Scores and Comments

The overall screening results are displayed in the Overall tab of the Dashboard. Interpretation and analysis of the results should start from the Overall tab. The Overall score for the project is displayed in the top right corner of the Dashboard (figure 10). It includes a speedometer with the score and overall result on the suitability of the project for PPP.

The speedometer is a color dial ranging from red to yellow to green. The color coding indicates the strength of the project, with red indicating the lowest score possible and dark green indicating the highest score possible (figure 11). The speedometer grades the project on a scale of 0 to 5. The range of scores includes the main results—deficient, weak, adequate, and strong—along with modified result types, for example “moderately weak” or “very weak.”
Projects with Overall scores greater than 2.5, classified as moderately adequate, going all the way to 5 (very strong) are considered suitable for PPP. However, the score is only an indicator. A user will need to pay attention to the identified areas to address deficiencies connected with potential Deal breakers, questions responded “uncertain” and/or “skipped.” The next stage of project development must address these gaps identified in the screening.

The project comments are displayed below the speedometer and are in three categories: overall result, identified areas to address, and response summary (figure 12). The arrow button is used to move from one category of comments to another.
The first category is **overall results**. It indicates how likely the project is to succeed as a PPP. To draw the user’s attention to issues that could jeopardize the project, the PSAT also displays a warning in a red box on the right side next to the speedometer if a potential Deal breaker or Prerequisite is triggered.

The second category of comments is **identified areas to address**. This category offers information on Deal breakers, Prerequisites triggered by the project, and the Parameters that need to be strengthened.

The third category is the **response summary**, which displays statistics for the data provided for the project, that is, the percentage of Prerequisites and potential Deal breakers triggered: Prerequisite questions, potential Deal breaker questions, and other questions marked “uncertain” or “skip.” Triggered Prerequisites and potential Deal breakers showcase areas of concern for the project. The percentage indicates the magnitude of the problem. The percentage of questions marked “skip” and “uncertain” indicates that the project has not been able to provide satisfactory answers to the questions on the Parameter screens. The percentages are clickable and present a breakdown of each type of question that needs to be addressed to improve the Overall project score.

In addition, a list of responses to all Prerequisites and Deal breakers is available at the bottom left side of the Dashboard tab (figure 13).

Figure 13: Dashboard: Prerequisites and Deal breakers

The status of the responses to the Prerequisites and potential Deal breakers is color coded: red indicates that the condition has been triggered; yellow indicates that the question has been marked with a “skip” or “uncertain”; and green indicates that the project meets good practices on that question. It is recommended to check the responses to these conditions, especially if they are displayed in red or yellow. The user can also refer to the Detailed Output Report to read the comments entered while responding to these questions.
2.6.2 Analyzing Parameter Scores

The Parameter snapshot and comments for the six Parameters are presented under the Parameter tab of the Dashboard (figure 14). The structure of the Parameter-level results is similar to that for the Overall results, apart from the warning functionality.

Figure 14: Dashboard: Parameter Tab

The score displayed below the speedometer relays the strength of the particular Parameter under review (selected above the speedometer). The comments on the Parameter are displayed below the speedometer. Similar to the comments displayed in the overall project results section, the Parameter-level comments are broken into three parts: overall Parameter comment, identified areas to address within the Parameter, and response summary. The identified areas to address indicates the Sub-parametres that need to be strengthened. The thermal bars to the right of the speedometer display the scores for each Sub-parameter.

2.6.3 Understanding Sub-Parameter Scores and Composite Variables

Analyzing Sub-parameter scores and Composite variables is a very important component of the analysis of the PSAT results. A complete list of the six Parameter and 25 Sub-parameter scores can be accessed at the bottom of the Dashboard (figure 15). The list includes the weights for each Parameter and Sub-parameter. The Parameter tab also displays the Sub-parameter scores in thermal bars in the center section; however, they are only displayed for the corresponding Parameter.
These scores help in understanding the impact of the Sub-parameter score on the Parameter score. It helps drill down the PPP Suitability analysis at the Sub-parameter level for better understanding of the project. The approach to the analysis of Sub-parameters is as follows:

- Identify the Sub-parameter that has scored low (below a score of 2.5) and revisit the relevant sections in the Detailed Project Reports to review the reasons for the low score.
- Revisit Sub-parameters with high scores to confirm that the responses to the questions are backed with adequate evidence.

Figure 15: Dashboard: Sub-Parameter Scores

Composite variables combine key Parameters and Sub-parameters to give an indication of the viability of the project in terms of its Ease of Implementation, Environmental and Social Sustainability, and Commercial Potential (figure 16).
Ease of Implementation indicates how fast the project can be taken to the transaction structuring stage. It classifies a project into categories of high, medium-high, medium, medium-low, and low Ease of Implementation for a contracting authority. Projects that are categorized as high, medium-high, or medium are likely to face fewer hurdles to close a PPP transaction with a private partner vis-à-vis projects grouped into the medium-low or low categories.

A project is grouped into a category if prespecified conditions related to the following are met for that category: (1) Parameter scores for Risk Assessment and Fiscal Affordability; (2) Sub-parameter scores for Environmental prefeasibility, Social prefeasibility, Economic Prefeasibility, Financial Prefeasibility, and Market potential; (3) the balance of land to be acquired by a contracting authority and the number of potential landowners and project-affected parties; and (4) responses to Deal breaker questions on environmental and social impacts of the project.

Environmental and Social Sustainability indicates the impact and interaction of the project with the environment and society around it. It classifies the Environmental and Social Sustainability of the project into high, medium, and low categories. Projects with high and medium Environmental and Social Sustainability scores are more suitable than projects with low scores.

A project is grouped into a category if prespecified conditions related to the following are met for that category: (1) Sub-parameter scores of Environmental prefeasibility, Social prefeasibility, Environmental and Social Risk; and (2) Climate and resilience profile comprising reduction in greenhouse gas emissions and resilience and adaptability to long-term climate change and hazards.

Commercial Potential indicates the project’s level of attractiveness for the private sector. It classifies the commercial potential of a project from the perspective of a private sector partner. Projects with high and medium commercial potential scores may attract higher interest from the private sector than projects with low scores.

A project is grouped into a category if prespecified conditions related to the following are met for that category: (1) Parameter scores of PPP Suitability and Fiscal Affordability, and (2) Sub-parameter scores of Economic Prefeasibility, Financial Prefeasibility, Market and demand risk, Offtaker risk, and Foreign exchange risk.
2.6.4 Responses to Questions and Comments

The last step involves analyzing the question-level responses and comments input into the PSAT. These details are displayed in the Detailed Project Report available in the Report Generator option of the main menu. Read the responses to the questions and confirm them before concluding on the suitability of the project for PPP.

2.7 Concluding on the Suitability of a Project

A project is considered suitable for PPP if the following conditions are met:

- All Prerequisites are met.
- The project scores are between "moderately adequate" and "very strong" (that is, between 2.5 and 5).
- None of the Deal breakers is triggered.
- Overall project and Parameter comments indicate that the project can be taken ahead to the next stage of development.
- Identified areas for improvement are manageable in the next stage of development.
- Percentages of questions marked "skip" and "uncertain" are acceptable.³

If some or none of these conditions are met, it is recommended to rework the project comprehensively, address the gaps identified by the Tool, and screen anew. If, despite multiple attempts at improving the deficiencies indicated by the PSAT results, a project fails to meet the above-mentioned conditions, it is recommended to consider developing the project through the conventional procurement route.

Note:

Although the PSAT will give an indication of the suitability of a project on the basis of the limited information obtained from the prefeasibility studies and other project documentation, the user is encouraged to substantiate the results generated by the PSAT with detailed feasibility studies before taking a decision to procure the project as a PPP. The presumption is that the user provides honest and accurate responses to the extent possible. The user must pay attention to the areas of concern highlighted by the PSAT, in addition to the score, even if the score indicates that the project is suitable for PPP, and take suitable steps to address these areas of concern as these can become potential roadblocks at subsequent stages in the process.

³ The PSAT algorithm constrains the score when the questions in a Sub-parameter that are marked negative/uncertain/skip exceed 60 percent. Hence, an acceptable percentage could be a value below 60 percent, depending on the quality of the project reports expected by country governments implementing the PSAT.
3 Pipeline Analytics

The PSAT screening exercise will result in the selection of eligible candidate projects that are suitable for implementation as PPP. PSAT scores indicate the suitability of a project on a stand-alone basis. However, governments may not wish to go ahead with all projects found suitable for PPP during the screening exercise due to limitations in institutional capabilities and the availability of project funding. The Pipeline Analytics feature of the PSAT can help in the prioritization of a long list of screened projects found suitable for PPP.

Pipeline Analytics allows the user to compare, analyze, and prioritize screened projects in the PSAT database through portfolio-level summary and viability-level indicators. It supports customized analysis of projects using filters and cluster charts. It also supports ranking projects across variables. The key functionalities of Pipeline Analytics are summarized under four tabs:

1. Dashboard – consists of a portfolio-level summary
2. Viability analysis – consists of Composite variables
3. Customized analysis – provides project grouping and analysis using filters and cluster charts
4. Ranking – provides ranking projects across variables.

The user must select the Pipeline Analytics tab in the main menu (figure 17) to access this functionality.

Figure 17: Access Pipeline Analytics

Before entering Pipeline Analytics, the user will be asked if they wish to update the project list. The user must select “yes” if modifications were made to an existing project in the PSAT, to allow the Tool to update...
the portfolio, and “no” if no modifications were made following the last screening session. Thereafter, the user must select the currency for the analysis and enter the currency conversion rates for converting project cost values to the selected currency.

3.1 Dashboard

The Dashboard is the first section of Pipeline Analytics (figure 18). It displays a summary of the PSAT database on the screen, providing the users with data insights.

Figure 18: Pipeline Analytics Dashboard

The content of the Dashboard is organized in panels. The first panel displays PSAT portfolio statistics highlighting the number of projects, size of the portfolio, number of implementing government agencies, number of projects that need government support, number of sectors represented in the portfolio, and number of projects originated by the private sector (unsolicited proposals).

The pie chart displays the portfolio by stage of project preparation, namely concept note, preliminary analysis, prefeasibility study, and feasibility study, with Information on the total value of projects and the number of projects (in square brackets).
The speedometer below the pie chart displays the distribution of projects across score categories. The legend underneath explains the color coding. The bottom row titled “Prerequisites not met” displays the number of projects that failed to meet any or all of the PSAT Prerequisites.

The top right section of the Dashboard displays the projects in the database by payment source and type of project and further breaks them down by sector.

The following sections of the Dashboard are clickable and allow a detailed look at projects within specific categories:

- Number of projects
- Implementing government agencies
- Projects that require government support
- Sectors
- Unsolicited projects
- Stage in project development
- PSAT score categories
- Payment type
- Project type.

The user can drill down into a category and access the project Dashboard by clicking on a project in a specific list. For example, by clicking on the number of sectors, a window will pop up displaying the list of sectors for projects in the portfolio. Selecting a sector will display a list of projects in that sector. Finally, selecting a project will display the Dashboard of that project with key project information (figure 19).
3.2 Viability Analysis

Viability analysis comprises Composite variables, namely, Ease of Implementation, Environmental and Social Sustainability, Commercial Potential, and Fiscal Affordability. The first three Composite variables are defined in subsection 2.6.3, and Fiscal Affordability is one of the PSAT Parameters. This functionality is displayed in two tabs: Ease of Implementation (figure 20) and Ease of Implementation subcomponents (figure 21).
Figure 20: Ease of Implementation

The categories in the top band (High, Medium, Low) are clickable. Clicking on them will display the projects within the category. The project titles in the list are clickable as well and on selecting a particular project, the user is able to view key information on the project.

Note: The Ease of Implementation subcomponents (Environmental and Social Sustainability, Commercial Potential, and Fiscal Affordability) do not have the medium-high and medium-low score categories.

3.3 Customized Analysis

Customized analysis supports user-defined analytics. The user can generate customized charts across PSAT Parameter and Sub-parameter scores and Composite variables based on user queries. The user can create customized project groups for further analysis with data filters and cluster charts.
3.3.1 Filtering Data

Filtering Data can be accessed by clicking on the Customized Analysis tab. This functionality allows users to extract a sample of projects from the portfolio by selecting a particular category filter from the drop-down menu, and then analyze the sample by a particular variable by selecting a variable filter (figure 22). The histogram organizes the number of projects for a selected category filter (mapped on the y-axis) into frequency bands for a selected variable filter (mapped on the x-axis).

Figure 22: Filtering Data

![Filtering Data](image)

For example, if a user would like to know the distribution of the PSAT Overall score for projects in the construction, operations, and maintenance category, they must select “Project type: Construction, operations and maintenance” in the category filter and then select “PSAT Overall Score” in the variable filter drop-down menu. The chart displays the number of construction, operations and maintenance projects on the y-axis for the PSAT Overall score in bands of 0-1, 1-2, 2-3, 3-4, and 4-5 on the x-axis (figure 23). The graph shows that most of the construction, operations, and maintenance PPP projects (54) scored between 2 and 3, and only five scored between 4 and 5 on the PSAT Overall score.
Figure 23: Example for Filtering Data

The panel on the right side lists projects in descending order of their scores. Clicking on a project on the panel will display the Dashboard for the project. Filtering Data can provide about 2,000 chart options using 55 category filters and 35 variable filters.

3.3.2 Cluster Charts

Cluster charts enable mapping of two selected variables on the y-axes vis-à-vis one variable on the x-axis. For example, the cluster chart in figure 24 displays the risk assessment score on the x-axis, PSAT Overall score on the left y-axis and, and technical prefeasibility score on the right y-axis.

Figure 24: Cluster Charts
The blue rhombuses on the cluster chart map the project against the x-axis and left y-axis, and the red circles map it against the x-axis and right y-axis. The panel at the bottom displays the names of the projects. Clicking on a project in the panel will display the position of that project on the chart using solid yellow and solid green rectangles and its position relative to other projects. The grey shaded area on the graph shows the number of projects that have lower x-axis scores relative to the selected project (figure 25).

Figure 25: Example for Cluster Charts

In theory, more than 40,000 cluster charts can be generated using these variables, using three axes with a selection of more than 35 variables on each axis.

3.4 Ranking Projects

The Ranking option allows the user to rank projects in the portfolio by the Overall score, Parameter score, Sub-parameter score, and across Composite variables. Projects can be ranked at the aggregate portfolio level or by sector or implementing government agency (figure 26). More than 100 ranked lists can be generated and exported into an Excel file for further analysis.
Figure 26: Ranking Projects

In addition, the entire PSAT portfolio can be extracted into a separate file by clicking the Download data option. This functionality downloads 120 datapoints for each project in the PSAT for further analysis (figure 27).

Figure 27: Download Data
4 Scoring Methodology

The scoring methodology of the PSAT flows through five key stages, as shown in figure 28.

![Figure 28: Scoring Methodology](image)

4.1 Question Score

The first two stages involve arriving at the question scores for the Sub-parameter before applying Complexity scores and score constraining. The process is as follows:

1. The responses provided by the user in the Basic Project Data screen populate the questions in the Parameter screens.
2. All questions in the Parameter screens are assigned predefined weights by the PSAT.
3. The user is required to respond to questions in the Parameter screens by selecting one of the responses in the drop-down menu. A score is assigned to each response option in the drop-down menu, as displayed in table 4.

Table 4: Scores Assigned to Drop-Down Menu Responses

<table>
<thead>
<tr>
<th>Response</th>
<th>Score assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Score: 1</td>
</tr>
<tr>
<td>No</td>
<td>Score: 0</td>
</tr>
<tr>
<td>Uncertain</td>
<td>Score: 0.5</td>
</tr>
<tr>
<td>Skip</td>
<td>No score is assigned, the question weight is reduced to zero, and it has an impact similar to “no” response.</td>
</tr>
<tr>
<td>N/A</td>
<td>No score is assigned; the question weight is redistributed to other questions in the Sub-parameter.</td>
</tr>
</tbody>
</table>

Note: there are some questions in the PSAT where “no” is a positive response that favors the project’s suitability for PPP. The scoring algorithm for such questions assigns a score of 1 for no and 0 for yes.

4. The PSAT checks for user responses that are marked N/A. Weights for questions with N/A responses are redistributed proportionately to other questions within the Sub-parameter.

5. The associated score for each question is multiplied by the question weight to arrive at the question weighted score.
4.2 Sub-Parameter Score

The Sub-parameter score is the total of the question weighted scores in the Sub-parameter multiplied by five (PSAT scale of five). The final score displayed for the Sub-parameter is subject to two additional operations: (1) score constraints applied at the Sub-parameter level, and (2) qualitative and quantitative scoring for selected Sub-parameters and Parameters, namely Environmental Sustainability, Economic Prefeasibility, Financial Prefeasibility, Risk of Delay in Land Acquisition, Foreign Exchange Risk, and Quantification of Fiscal Support.

4.2.1 Sub-Parameter Score Constraints

Sub-parameter score constraints are applied as checks to avoid selection of projects where a large number of non-substantive response options are selected by the user.

If the number of questions marked “no” and/or “uncertain” is more than two, the score for the Sub-parameter is constrained to 2 or 2.5. Where the aggregate number of “no,” “uncertain,” and “skip” responses exceeds 60 percent of the responses in a Sub-parameter, the score is constrained, as shown in table 5.

Table 5: Sub-Parameter Score Constraints

<table>
<thead>
<tr>
<th>Step 2 Constraint</th>
<th>Greater than or equal to</th>
<th>Less than or equal to</th>
<th>Forced/constrained score</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the percentage of [negative, uncertain, and/or skipped] responses for a Sub-parameter is between 60.1%</td>
<td>70%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>If the percentage of [negative, uncertain, and/or skipped] responses for a Sub-parameter is between 70.1%</td>
<td>90%</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>If the percentage of [negative, uncertain, and/or skipped] responses for a Sub-parameter is between 90.1%</td>
<td>100%</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Example. Table 6 provides an example of score computation and constraining for the Design and Construction risk Sub-parameter within the Risk Assessment. The user must respond to six questions under this Sub-parameter. The table provides a simulation of a combination of responses and the scores selected by the algorithm.
Table 6: Simulation of the Sub-Parameter Constraint Algorithm

<table>
<thead>
<tr>
<th>Combination of responses (yes, no, uncertain, skip)</th>
<th>Best score possible (a)</th>
<th>Step 1 constraint (b)</th>
<th>Step 2 constraint 60%-70% (c)</th>
<th>Step 2 constraint 70%-90% (d)</th>
<th>Step 2 constraint 90%-100% (e)</th>
<th>Score selected by the algorithm [minimum of a, b, c, d, e]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6,0): User response is “yes” for all 6 questions (0%)</td>
<td>5</td>
<td>Not triggered</td>
<td>Not triggered</td>
<td>Not triggered</td>
<td>Not Triggered</td>
<td>5</td>
</tr>
<tr>
<td>(5,1): User response is “yes” for 5 questions, and the remaining 1 response is “no,” or “uncertain,” or “skip” (17%)</td>
<td>4.58</td>
<td>Not triggered</td>
<td>Not triggered</td>
<td>Not triggered</td>
<td>Not Triggered</td>
<td>4.58</td>
</tr>
<tr>
<td>(4,2): User response is “yes” for 4 questions, and the remaining 2 responses are any combination of “no,” “uncertain,” and/or “skip” (33%)</td>
<td>4.17</td>
<td>2</td>
<td>Not triggered</td>
<td>Not Triggered</td>
<td>Not Triggered</td>
<td>2</td>
</tr>
<tr>
<td>(3,3): User response is “yes” for 3 questions, and the remaining 3 responses are any combination of “no,” “uncertain,” and/or “skip” (50%)</td>
<td>3.75</td>
<td>2</td>
<td>Not triggered</td>
<td>Not Triggered</td>
<td>Not Triggered</td>
<td>2</td>
</tr>
<tr>
<td>(2,4): User response is “yes” for 2 questions, and the remaining 4 responses are any combination of “no,” “uncertain,” and/or “skip” (67%)</td>
<td>3.33</td>
<td>2</td>
<td>2</td>
<td>Not Triggered</td>
<td>Not Triggered</td>
<td>2</td>
</tr>
<tr>
<td>(1,5): User response is “yes” for 1 question, and the remaining 5 responses are any combination of “no,” “uncertain,” and/or “skip” (83%)</td>
<td>2.92</td>
<td>2</td>
<td>Not triggered</td>
<td>1.5</td>
<td>Not triggered</td>
<td>1.5</td>
</tr>
<tr>
<td>(6,0): User response is “yes” for 0 questions and 6 responses are various combinations of “no,” “uncertain,” and/or “skip” (100%)</td>
<td>2.5</td>
<td>2</td>
<td>Not triggered</td>
<td>Not triggered</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
4.2.2 Qualitative and Quantitative Scoring with Complexity Scores

A quantitative element is desirable for some of the Sub-parameters in the PSAT. This is addressed through Complexity scoring. The Complexity score is a weighted percentage that assigns weights to qualitative and quantitative responses. Complexity scores are used for the following:

The algorithm for Complexity scoring gets triggered only when the user provides quantitative inputs to sections D – Government Support, E – Land Status, G – Return Expectations, H – Foreign Exchange Risk, and I – Climate Change & Resilience Profile in the Basic Project Data screen. The algorithm works on a qualitative basis, that is, without Complexity scoring, if the user enters zero for C, G, and H; “uncertain” or zero for E; and “not used” for I.

1. Environmental Sustainability

The qualitative score for the Environmental Sustainability Sub-parameter is combined with the quantitative information in the Climate Change and Resilience profile of the project through a Complexity scoring algorithm. The algorithm provides for higher scores for projects that sequester more carbon than they emit and/or have higher resilience to climate change. The final score for the Environmental Sustainability Sub-parameter is the weighted average of the qualitative responses to the questions in the Environmental Sustainability Sub-parameter and the score for the Climate Change and Resilience profile in the ratio 50:50 (figure 29).

Figure 29: Calculating the Environmental Sustainability Score

2. Economic Prefeasibility

The qualitative information in the Economic Prefeasibility Sub-parameter is combined with the quantitative information related to the economic internal rate of return (eIRR) through a Complexity scoring algorithm. The algorithm provides for a higher score for a project with a higher eIRR relative to the threshold eIRR. The final score for the Economic Prefeasibility Sub-parameter is the weighted average of the qualitative response to the questions in the Economic Prefeasibility Sub-parameter and the score for the difference in project eIRR vis-à-vis the threshold eIRR in the ratio 50:50 (figure 30).
3. Financial Feasibility

The qualitative information for the Financial Feasibility Sub-parameter is combined with the quantitative information related to the return expectations and fiscal commitments of the project through a Complexity scoring algorithm. Projects with higher IRR and DSCR are assigned a higher quantitative Financial Feasibility Complexity score. Projects with a higher percentage of fiscal commitments as a percentage of GDP are assigned a lower quantitative Fiscal Affordability score. The algorithm uses the weighted average of the geometric mean of these two scores and the qualitative scores for the Sub-parameter in the ratio 70:30 to assign the final score for the Sub-parameter (figure 31).

4. Risk of Delay in Land Acquisition

The qualitative information related to the Risk of Delay in Land Acquisition is combined with the quantitative information related to land acquisition through a Complexity scoring algorithm.

The quantitative land acquisition score is derived using a combination of the extent of land acquisition required for the project and the number of landowners and project-affected persons who must agree to the land acquisition. The quantitative land acquisition score gets reduced as the extent of land acquisition and number of landowners and project-affected persons increase.
The final Sub-parameter score for the Risk of Delay in Land Acquisition is a weighted average of the responses to the qualitative questions in the Risk of Delay in Land Acquisition Sub-parameter and the quantitative land acquisition score in the ratio 50:50 (figure 32).

Figure 32: Calculating the Risk in Delay in Land Acquisition Score

5. **Foreign Exchange Risk**

The qualitative information for the Foreign Exchange Risk Sub-parameter is combined with the quantitative information related to foreign exchange using a Complexity scoring algorithm.

The quantitative score for Foreign Exchange Risk is linked to depreciation of the national currency against the benchmark currency. The algorithm assigns a full score for depreciation of the national currency of up to 5 percent, which reduces as the depreciation increases.

The final score for the Foreign Exchange Risk Sub-parameter is a weighted average of the score assigned to the responses to the qualitative questions in the Foreign Exchange Risk Sub-parameter and the quantitative foreign exchange score in the ratio 50:50 (figure 33).

Figure 33: Calculating the Foreign Exchange Risk Score
6. Quantification of Fiscal Support

The qualitative information for the Quantification of Fiscal Support Sub-parameter is combined with the quantitative information related to fiscal commitments of the project through a Complexity scoring algorithm.

The score for the quantitative information related to fiscal commitments is derived from the project’s direct commitments and contingent liabilities for the government as a percentage of GDP. An increase in direct or contingent liabilities will lead to a decrease in the Complexity score and vice versa.

The final score for the Quantification of Fiscal Support Sub-parameter is a weighted average of the Complexity score based on user estimates of direct commitments and contingent liabilities as percentages of GDP and the responses to qualitative questions in this Sub-parameter in the ratio 67:33 (figure 34).

Figure 34: Calculating the Quantification of Fiscal Support Score

4.2.3 Other Sub-Parameters That Have Adjustments Based on Quantitative Inputs

In addition to the six Complexity scoring algorithms, the Offtaker Risk, Market and Demand Risk, and Value for Money are the other Sub-parameters that are influenced by quantitative inputs.

The Sub-parameter scores for Offtaker Risk and Market and Demand Risk are influenced by the proportion of availability payments as a percentage of total revenue in projects with a hybrid revenue profile.

The quantitative value for the VFM as provided in the Basic Project Data screen influences the VFM Sub-parameter score. The algorithm provides for a higher score for a project with a higher VFM relative to the threshold VFM.

4.3 Parameter Score

The score for a Parameter is the weighted sum of the Sub-parameter scores in that Parameter.

In some cases, it has been observed that the low scores of some Sub-parameters are compensated by other, high-scoring Sub-parameters within the Parameter, and this results in an above average or high Parameter score. To prevent this, constraints have been applied to the following Parameters:

1. Risk Assessment
2. PPP Suitability
3. Fiscal Affordability.

If the scores of these Sub-parameters are below the threshold, the Parameter score is constrained by applying a forced score.

4.4 Overall Score

The Parameter score is multiplied by Parameter weights to arrive at the weighted Parameter score. The sum of the weighted Parameter scores provides the Overall score or the total project score. The Overall score is forced to 2 if more than 25 percent of the potential Deal breakers are triggered in the project.
5 Customizing the PSAT

The PSAT is a precalibrated tool. This section can be skipped if the user intends to use the PSAT with the default settings. However, if the user needs to customize the PSAT for country-specific priorities and requirements, they can undertake a customization exercise at nine levels. The procedure for customization is described in the customization sheets of the PSAT along with cell references. Only the yellow-colored cells in the Admin and Data Analysis sheets can be modified for customization.

Figure 35 presents the computation flow of the PSAT. The individual question scores are first multiplied by question weights and adjusted for quantitative complexity. Thereafter, the scores are consolidated at the Sub-parameter, Parameter, and Overall levels after applying the constraints.

Figure 35: Computation Flow of the PSAT

The entire process has three weights (Qw, SPw, and Pw), three constraints (Csp, Cp, and Co), and Complexity scores that influence the scoring. These are the customizable components of the PSAT. The other customizable components include the option to designate questions as Prerequisites and potential Deal breakers. The nine levels of customization classified into four categories are displayed in table 7.

Table 7: PSAT Customization Levels

<table>
<thead>
<tr>
<th>Category</th>
<th>Customization level</th>
<th>Tabs to customize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic customization</td>
<td>1. Select Prerequisites</td>
<td>Admin</td>
</tr>
<tr>
<td></td>
<td>2. Select potential Deal breakers</td>
<td></td>
</tr>
<tr>
<td>Customizing major weights</td>
<td>3. Alter Parameter weights [Pw]</td>
<td>Admin</td>
</tr>
<tr>
<td></td>
<td>4. Alter Sub-parameter weights [SPw]</td>
<td></td>
</tr>
<tr>
<td>Customizing constraints</td>
<td>5. Constrain Sub-parameter score [Csp]</td>
<td>Admin</td>
</tr>
<tr>
<td></td>
<td>6. Constrain Parameter score [Cp]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Constrain Overall score (potential Deal breakers triggered) [Co]</td>
<td></td>
</tr>
<tr>
<td>Micro customization</td>
<td>8. Alter question weights [Qw]</td>
<td>Data Analysis</td>
</tr>
<tr>
<td></td>
<td>9. Alter Complexity score weights</td>
<td></td>
</tr>
</tbody>
</table>
To customize the PSAT, click on the Tool Customization section in the main menu (figure 36), enter the password, and select Edit Excel for customization.

Figure 36: Entering Tool Customization

![Figure 36](image_url)

Edit Excel will allow the user to access the backend of the PSAT, which consists of more than 25 sheets. The user must navigate to the Admin and Data Analysis sheets for customization. The user should undertake changes only in the areas marked for customization described in the following subsections.

5.1 Basic Customization

Level 1 and Level 2 customization can be carried out in the Admin sheet by choosing the three Prerequisites and 12 potential Deal breakers (figure 37). The user must check/uncheck the boxes next to the questions to determine which questions should appear as Prerequisites and potential Deal breakers.

Figure 37: Cells for Basic Customization

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deal Breaker</th>
<th>Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Steps to Be Followed for Level 1 and Level 2 Customization

This can be done with the following procedure:

Step 1. Access the administrator sheet.

 Navigate to the Admin sheet and locate cells B37:N40 in the Admin sheet for Prerequisites and cells B41:N53 for potential Deal breakers.

Step 2. Uncheck the checkbox for the Prerequisite or potential Deal breaker.

 By checking/unchecking the checkboxes within the yellow-colored cells (N38:N53), the user can determine which questions should/should not appear as Prerequisites and potential Deal breakers.

5.2 Customizing Major Weights

The Admin sheet is also used for making Level 3 and Level 4 changes by altering the Parameter weights (Pw) and Sub-parameter weights (SPw) (figure 38).

Figure 38: Cells for Customizing Major Weights

To modify the Parameter and Sub-parameter weights, the user shall use the following procedure:

Step 1. Access the Admin sheet (common step for Levels 3 and 4 customization).

 Navigate to the Admin sheet and locate the table at B3:N34 in the Admin sheet.

Steps to Be Followed for Level 3 Customization: Altering Parameter Weights (Pw)

Step 2. Uncheck the Reset Parameter Weights button.

 The Reset Parameter Weights checkbox ensures that the default set of Parameter weights is applicable on the Tool. Unchecking the yellow box in cell E3 allows modifications to the Parameter weights.

Step 3. Adjust Parameter weights.
Parameter weights can be modified by adjusting the scroll bar in column E for each Parameter row.

Step 4. View the applicable Parameter weight.

Following modification using the scroll bar, the new applicable weight can be viewed in column F of the Admin sheet for each Parameter.

Steps to Be Followed for Level 4 Customization: Altering Sub-Parameter Weights (SPw)

Step 2. Uncheck the reset button for only the specific Sub-parameter where the change is being made.

The Reset Weights button for each Sub-parameter in column N ensures that the default set of Sub-parameter weights is applicable. Uncheck the Reset Box to allow modifications to the Sub-parameter weights.

Step 3. Adjust Sub-parameter weights.

Unlike Parameter weights, which can range from 0 to 100 percent, Sub-parameter weights can only be altered from a minimum of 5 percent to a maximum of 80 percent, to ensure that customization does not result in reducing the significance of a Sub-parameter for screening. Weights can be inputted directly in column G of the sheet or using the scroll bar in column H to achieve the desired result.

Step 4. View the applicable Sub-parameter weight.

Following the modification using the scroll bar, the applicable weight can be viewed in column F of the Admin sheet for each Sub-parameter.

The PSAT is precalibrated in such a way that the total weight of the Sub-parameter always adds up to 100 percent. No Sub-parameter would accept a weight of more than 80 percent or lower than 5 percent at any point. The upper limit of the weights of Sub-parameters is also dependent on the number of Sub-parameters within the Parameter. As the user uses the slider to change the weight of a Sub-parameter, the weights of the other Sub-parameters will be adjusted in such a way that the total weight of 100 percent is maintained at all times.

It is advisable not to alter the weights for the Sub-parameters in the Risk Assessment Parameter, as the weights for Market and demand risk, Offtaker risk, and Foreign exchange risk are linked to decision trees. This makes it difficult to fix a weight, as it will vary from project to project.

5.3 Customizing Constraints

The Admin sheet can be used for Level 5, Level 6, and Level 7 changes, allowing modification of default threshold limits applicable for constraints on the Sub-parameter, Parameter, and Overall score, respectively (figure 39).
To modify the constraints, the user shall use the following procedure:

Step 1. Access the Admin sheet (common step for Levels 5, 6, and 7 customization).

Navigate to the Admin sheet and locate the three tables at B56:N71 in the Admin sheet.

Steps to Be Followed for Level 5 Customization: Altering Constraints for Sub-Parameter Score (Csp)

Step 2. Change the default values in the table at B66:N61.

- Enter the desired lower limit required to be set in cell L59.
- Enter the desired upper limit in the cell range M59:M6.
- Enter the desired forced score by inserting values in the yellow-colored cells N59:N61.

The cells for altering constrains for a Sub-parameter are displayed in figure 40. The user can refer to section 4.2.1 (Sub-Parameter Score Constraints) for the algorithm on how these constraints apply to the scores.

Steps to Be Followed for Level 6 Customization: Altering Constraints for a Parameter (Cp)

Level 6 customization applies to constraints on the Parameter scores for Risk Assessment, PPP Suitability, and Fiscal Affordability in two stages. The constraint is triggered and a forced score is applied as per the rule mentioned in table 8. The second stage gets triggered only for the Risk Assessment Parameter, and it applies over and above the first-stage trigger.
Table 8: Trigger Conditions for Constraining a Parameter Score

<table>
<thead>
<tr>
<th>Stage</th>
<th>Applies to</th>
<th>Trigger condition – scores for Sub-parameters</th>
<th>Parameter score forced to</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Risk Assessment, PPP Suitability, Fiscal Affordability * Refer to rows 68 and 69</td>
<td>Any one Sub-parameter score below 2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any one Sub-parameter score below 1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>II</td>
<td>Risk Assessment * Refer to rows 70 and 71</td>
<td>Any two or more Sub-parameter scores below 2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any two or more Sub-parameter scores below 1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The user can change the threshold level at which the score constraint should be applicable as well as the forced score that is applicable upon breach of the threshold (figure 41). The modification can be done as follows:

Step 2. Change the default values in the table at B66:N71.
- Input the desired threshold range in cells L68:L71.
- Input the desired forced scores in yellow-colored cells N68:N71.

Figure 41: Cells for Altering Parameter Constraints

Level 7 Customization: Altering the Overall Score Constraint (Co)

The user can alter the threshold beyond which if an excessively higher number of potential Deal breakers are triggered, the Overall score would be constrained. Further, the user can modify the maximum forced project score when potential Deal breakers are triggered (figure 42). The modification can be done as follows:

Step 2. Change the default values.
- Enter the desired threshold value in cell L64.
- Enter the desired forced score in yellow-colored cell N64.
5.4 Micro Customization

Level 8 and Level 9 customization involves changing the precalibrated individual question weights within the Sub-parameter and the default weights for the Complexity scores. The Data Analysis sheet is used for Level 8 and Level 9 customization.

Level 8 Customization: Alter Question Weights (Qw)

Step 1. Access the Data Analysis sheet.

Navigate to the Data Analysis sheet and locate the table at A8:E143 in the sheet.

Step 2. Input the question weights.

The question weights can be altered by directly entering the required value in the yellow-shaded percentage cell corresponding to the question in D11:D143 (figure 43). The total of the Sub-parameter weight is displayed in column E. In the event the Sub-parameter weight is greater or less than 100 percent, the total weight cell displayed in column E will be highlighted in red, as seen in figure 43. Care should be taken to ensure that the weights set always add up to 100.
Figure 43: Cells for Altering Question Weights

Note: Question weights for Market and Demand Risk and Offtaker Risk cannot be modified, as they are linked to the percentage of availability payments in the total payment decision tree question in the revenue profile.

Level 9 Customization: Altering Complexity Score Weights

Step 1. Access the Data Analysis sheet.

Navigate to the Data Analysis sheet and locate the table at H10:K16 in the sheet.

Step 2. Input the Complexity weights.

Input the desired weights in the yellow-shaded cells J11:J16.

The user can determine the split between the weights for the total Complexity score (quantitative score) and qualitative question weights by making changes in the yellow-colored cells in column J. The weights in column K will automatically be adjusted to reflect the balance weight. The total of column J and column K adds up to 100 percent (figure 44).
5.5 Things to Remember While Customizing the PSAT

The PSAT provides the user the flexibility of customizing the PSAT based on country-specific requirements. Customization must be undertaken only within yellow-shaded cells. In exceptional circumstances and under stress conditions, the PSAT may give erratic results. Users should exercise caution during customization as follows:

Prerequisites and potential Deal breakers should be selected with care, as negative responses could potentially give a materially deficient score for the project.

Customization must be evaluated for any inconsistency by running the PSAT multiple times.

The user should ensure that the sum of all the Parameter weights always equals 100 percent, and the individual Sub-parameter weights should be between 5 and 80 percent.

Note: Country governments intending to customize the PSAT should do the following:

- Have a person who is reasonably proficient in Excel customize the PSAT.
- Undertake changes only in the yellow cells marked for customization without disturbing other cells.
- Document the changes for internal record.
- Issue a locked version of the PSAT to users following customization.
6 Annexes

6.1 Explanatory Notes

The following are the instructions to the user and explanatory notes mentioned in the Project Screening and Analytics Tool (PSAT) for ready reference by the user.

6.1.1 Instructions to Users

<table>
<thead>
<tr>
<th>Notes for Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>
| B | Thereafter, provide responses to questions for the following Parameters:
I. Strategic Suitability
II. Preliminary Feasibility
III. Risk Assessment
IV. PPP Suitability
V. Fiscal Affordability
VI. Institutional Capability |
| C | The user shall respond to all questions in the questionnaire and the responses can be the following:
1) Yes: the user agrees with the statement.
2) No: the user disagrees with the statement.
3) Uncertain: the response to the statement is not a definite “No” and the user is unsure of it being a definite “Yes.”
4) SKIP: the statement applies to the project, but there is insufficient information to choose an informed response.
5) Not applicable (N/A): the statement does not apply to the project. |
| D | “No” response to any of the Prerequisites in the Basic Project Data screen will trigger a warning to the user to reexamine. The Overall score on the Dashboard will stand reduced to zero, although specific Parameter scores would be available to the user to assess the project’s strengths and weaknesses in the remaining areas. It is anticipated that this will help the user in anticipating issues and preparing a strategy or a path forward to resolving them. |
| E | Providing a “negative, uncertain, or skip” response to several questions in a Sub-parameter will result in scores being restricted for the Sub-parameter. For example, a maximum score of 2 for 60-75 percent skipped responses; a maximum score of 1.5 for 75.1-90 percent skipped responses; and a maximum score of 1 for 90.1-100 percent skipped responses. |
| F | Questions marked in red-colored font are potential Deal breakers. Responding to these questions with a negative response beyond a threshold (or tolerance percentage, for example 25 percent) will result in scores being restricted to less than 2 or the weak category for the entire project. The scores will be prorated down for correspondingly higher numbers of potential Deal breakers triggered. |
Notes for Users

G A combination of qualitative and quantitative scoring is used to arrive at the final score for some of the Sub-parameters. The quantitative scoring process for the Sub-parameter is activated when the user provides numerical information on the project in the Basic Project Data. The PSAT will compute scores based only on the qualitative scoring process in cases when the numerical information is not provided in the Basic Project Data screen.

H The results of the screening exercise can be viewed in the Dashboard and reports produced under the Report Generator options.

I Explanatory notes can be accessed by clicking on the “Learn More (I)” option.

J To customize the Tool, the user will need a password for accessing the embedded Excel sheets.

Disclaimer

The Public-Private Partnership (PPP) Project Screening and Analytics Tool (PSAT/Tool) is for preliminary screening of projects to determine their potential suitability for PPP procurement. The PSAT evaluates projects on qualitative and quantitative variables assuming a fair level of work has been done on the project, including but not limited to high-level or prefeasibility studies—technical, economic, financial, legal, social, and environmental analysis; site checks; fiscal and budget checks; political economy considerations; clear articulation of the need for the project; initial market checks; preliminary risk analysis; qualitative value for money (VFM) check; and so on. The PSAT does not substantiate the accuracy of the information provided by the user nor can the PSAT replace a full-scale, detailed feasibility study. The Tool identifies the strength of a project to be undertaken as a PPP and supports analysis and prioritization of projects in the portfolio. The PSAT provides a first level of assessment and gives the user an indication of whether the project can be evaluated in greater detail. A favorable score indicated by the PSAT should be followed up with detailed studies. The PSAT can also be used as a decision tool or checklist at the feasibility stage, that is, as an aid for deciding whether the project can be taken to tender.
6.1.2 Explanatory Notes: User Inputs in the Basic Project Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Response Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage in project development</td>
<td>CN – Concept Note</td>
</tr>
<tr>
<td></td>
<td>PA – Preliminary Analysis</td>
</tr>
<tr>
<td></td>
<td>PFS – Prefeasibility study</td>
</tr>
<tr>
<td></td>
<td>FS – Feasibility Study</td>
</tr>
</tbody>
</table>
| A | (i) **Construction, operation, and maintenance** for design-build-finance-operate-maintain, design-build-finance-maintain, design-build-operate-maintain, and public finance initiative types of projects.
 | (ii) **Operation and maintenance** for projects that are already constructed and need to be operated and maintained. These are long-term management contracts or service contracts.
 | (iii) **Construction** for design-build or design-build-finance types of projects that require only construction. |
| B | Prerequisite |
| | These are essential conditions that need to be satisfied for proceeding with the project through the PPP procurement route. "No" response to any of these conditions will trigger a warning, and the Overall project score will be restricted to zero. The user will need to address the issue before finalizing the PPP screening process. However, the user can continue with the evaluation and assess the project at the Parameter level. This will help the user to identify other areas for improvement in the project. |
| C | Revenue profile |
| | Choose any one of the three options that represents the revenue or income profile of the project during operations:
 | (i) **User charges**, where project revenue is fully derived from tariffs paid by users or offtakers
 | (ii) **Availability payments**, where project revenue is fully derived from government payments linked to the availability of the project facility, outputs, or capacity
 | (iii) **Hybrid payments**, where project revenue is a combination of user charges and availability payments. |
Section | Response Options
---|---
The user shall also provide the percentage share of availability payments to the total revenues of the project if this option is selected. The percentage is computed as (total availability payment / total revenues) x 100.

Revenue or income from lease rentals, recurring income from commercial land exploitation rights, advertisement rights, and so forth can be considered as part of user charges.

Indirect government support in the form of additional land exploitation rights, transfer of real estate development rights, and so forth that are of the nature of capital income can be excluded in the computation of revenue or income.

Government support
Choose "yes" if the project requires government support. Government support is computed in net present value (NPV) terms as a percentage of the nominal gross domestic product (GDP) of the country. The numerator and denominator are in NPV.

In terms of fiscal significance, the PPP Screening Tool considers projects with government commitments less than 0.25 percent of nominal GDP as projects with moderate fiscal impact. Projects with government commitments of more than 0.50 percent of GDP are considered projects with high fiscal impact, which reduces the Fiscal Affordability score.

Choose "yes" if the project provides upside benefits to the contracting authority and quantify the government support as a negative percentage. Negative percentage implies that the project provides revenues to the government. Examples include revenue share, concession fee, fixed annual payments, and so forth. The method for computation of benefits will be similar to the computation of direct commitments of government support, except the upside benefits will be inputted in negative percentage values.

“Uncertain” response. The user will need to input 0 percent for direct commitments and contingent liabilities if the project requires government support and estimates have not been quantified yet. Then the Tool will evaluate based on the qualitative information provided by the user.

Choose "no" if the project does not require government support. These are projects where user charge revenues are the main source of income for the project.

Direct commitments by the government. These are payment commitments where the need for payment is known—these could include an upfront capital payment or regular payments over a specified period of the contract. Examples include upfront viability payments or viability gap financing, availability payments, output-based grants or unitary payments, public funding support, and so forth.

Direct commitments by the government can be computed as (NPV of government payouts / NPV of nominal GDP for the corresponding period of government payouts) x 100. Example: the direct commitment as a percentage of GDP for an upfront viability payout over three years can be computed as NPV (P1, P2, P3) / NPV (G1, G2, G3) x 100,
<table>
<thead>
<tr>
<th>Section</th>
<th>Response Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>where P1, P2, and P3 are annual payouts and G1, G2, and G3 are the projected nominal GDPs for the years corresponding to the payouts. Contingent liabilities. These are obligations that arise from risk-specific assurances provided by the implementing agency or the government to assure the PPP project against certain unforeseen outcomes. Contingent liabilities arise from minimum revenue guarantees, foreign exchange guarantees, credit guarantees, inflation risk guarantees, counterparty payment guarantees, and others. The value and timing of the payment cannot be firmly ascertained, but it can be estimated based on risk assessment techniques. Contingent liabilities as a percentage of GDP can be computed as: NPV (P1, P2, P3,... Pn) / NPV (G1, G2, G3... Gn) x 100, where P1, P2, P3,... Pn are estimated risk assessed annual payouts and G1, G2, G3... Gn are the projected nominal GDPs for the years corresponding to the payouts.</td>
</tr>
<tr>
<td>E</td>
<td>Land status</td>
</tr>
<tr>
<td>Section</td>
<td>Response Options</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>F</td>
<td>Value-for-money (VFM) quantitative assessment</td>
</tr>
</tbody>
</table>
| G | **Return expectations** | **Project internal rate of return (IRR) base case.** The project’s financial IRR, which represents the overall returns to all project investors. It is usually taken from the most likely or base case scenario.
Project IRR (stress case). The project IRR in the worst-case scenario. This is to gauge how the investor returns would be impacted if the project came under stress. Usually, stress scenarios are built by varying key assumptions related to macroeconomic and major project-specific variables that could have an adverse impact on the project cost, revenues, and operating costs.
Threshold project IRR. A threshold reference rate below which the project is likely to be unviable. Usually, the threshold IRR is taken to be the percentage equal to the weighted average cost of capital for the project.
Minimum debt service coverage ratio (DSCR) base case. The ability of the project cash flows to service debt obligations in any given year during the tenure of the debt in the project. Usually, the base case value is placed here.
Minimum DSCR (stress case). The computation of minimum DSCR in the worst-case scenario.
Threshold minimum DSCR. The minimum level DSCR that is expected by lenders in the base case scenario.
Economic IRR. The economic rate of return of the project estimated after considering all costs and benefits from the project to the society.
Threshold economic IRR. A threshold reference economic IRR rate that justifies the project as economically sustainable. Usually, the threshold economic IRR considered is 12 percent.
Uncertain response. In case financial estimates are not available, please input 0 percent for IRR values and 0 for DSCR values. Similarly, input 0 percent for economic IRR values if preliminary estimates for economic returns are not available. The Tool shall then rely on qualitative analysis to evaluate the relevant Parameters. |
Section H: Foreign Exchange Risk Profile

Choose whether the project is exposed to foreign exchange risk or not, for example, if revenues are in local currency and capital investment service obligations are in foreign currency.

Input the last five-year average depreciation of national currency vis-à-vis the benchmark foreign currency. Typically, the benchmark foreign currency is the foreign currency of expected financing. Typically, it could include U.S. dollars, euros, or British pounds. In case financing is expected in a combination of foreign currencies, then the historical estimates based on a basket of currencies could be used.

Section I: Climate Change and Resilience Profile – Reduction in Greenhouse Gas Emissions

Expected reduction in greenhouse gas (GHG) emissions once the project is completed. Select one of the following options:

- **Net carbon negative**: if the completed project is carbon negative (that is, it sequesters more carbon than it produces). Using a completed life-cycle carbon assessment, the project team works to design the project so that it is carbon negative through extensive use of renewable energy and carbon sinks.

- **Carbon neutral**: if the completed project is carbon neutral (does not produce any net carbon emissions, that is, a 100 percent reduction). Using a completed life-cycle carbon assessment, the project team works to design the project so that it is carbon neutral through extensive use of renewable energy and carbon sinks.

- **Potential reduction possible**: if there is potential for at least 20 percent GHG reduction from the original base case scenario of the project. In this instance, it can be reasonably expected that the project team will improve the project’s design and thereby achieve a reduction in GHG emissions from the original base case, for example, if in the base case the project would have 100 units of GHG emissions, and in the improved project design case the GHG emissions are 80 units. Then it can be stated that by improving the project’s design, the potential GHG emissions from the project stand reduced by 20 percent.

- **None of the above**: in case the project will emit GHG and none of the above scenarios is applicable.

- **Not used**: please select this option in the case that information on GHG is not available.

Additional Information

Projects could include resilient and adaptive project design and systems that have considered the following factors:

(i) Identification of specific measures taken to address the potential consequences of long-term climate change, such as sea level rise, increased intensity and frequency of
<table>
<thead>
<tr>
<th>Section</th>
<th>Response Options</th>
</tr>
</thead>
</table>
| adaptability to long-term climate change and hazards | extreme weather events, extended droughts, heat waves, increased ambient temperature, and so on.
(ii) Identification of specific measures taken to address other potential long-term threats, such as desertification, water and energy shortages, shortages of other critical materials, and so on.
(iii) Identification of siting or design features that increase alternative supply options for water, energy, or other materials critical to the operation of the completed project.
(iv) Natural or human-induced hazards that could include a variety of events, such as wildfires, floods, tornadoes, hurricanes, earthquakes, tsunamis, and human-induced hazards. Research should be undertaken on the past and projected frequency and severity of these hazards and the ability of the project design to cope with each possible event.
(v) Where possible, some analysis (if applicable) on how the project could restore habitats in a way that reduces the impacts of future disasters, various strategies used, and how they minimize the risk of future hazards using environmental restoration. |

Envision is a guidance and rating system for sustainable infrastructure. It was developed by the Institute for Sustainable Infrastructure in partnership with the Zofnass Program at the Harvard Graduate School of Design. The Institute for Sustainable Infrastructure was founded by the American Council of Engineering Companies, the American Public Works Association, and the American Society of Civil Engineers. For further details, please refer to the Envision Manual, https://sustainableinfrastructure.org/.
6.1.3 Explanatory Notes: Parameters

<table>
<thead>
<tr>
<th>Title</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Strategic Suitability</td>
<td></td>
</tr>
<tr>
<td>Alignment with Government Priorities</td>
<td>The project’s strategic importance and alignment with government priorities are assessed, as under:</td>
</tr>
<tr>
<td></td>
<td>Project derived from national plan or strategic documents. These could be one or a combination of national, subnational, sectoral, and departmental plans and strategies that articulate the development priorities and provide the indicative nature of the project pipeline.</td>
</tr>
<tr>
<td></td>
<td>Alternatively, projects could be identified through a needs analysis emanating from a policy or strategy document. For large projects, it is advisable that the project is part of a strategic document or plan, which would assure that the government’s scarce resources are optimally deployed.</td>
</tr>
<tr>
<td></td>
<td>Strategic importance. Herein, priority should be placed on projects that have the potential to transform a region, which could attract further private investments and lead to substantial economic development of the region. These could be projects that have a high economic multiplier effect in terms of income or investments. The region is defined as the area of influence of the project. The region can be a municipality for an urban water supply project, a hinterland for a port project, or an influence area served by an expressway project, and so forth.</td>
</tr>
<tr>
<td></td>
<td>Typically, development of such projects may be a Prerequisite for other projects to develop (driver relationship). This could also include projects that have substantial forward and/or backward linkages with other projects. For example, a toll road or railway line project could improve connectivity to a port, thereby reducing logistics costs or enabling faster evacuation of cargo at the port and/or supporting port-based industries to an existing port facility. In such case, the sustenance of one project is closely linked to the development of the new project (linkage relationship).</td>
</tr>
<tr>
<td></td>
<td>Improvement in quality of life. This question is used to assess the nature of the positive impact that a project has on the quality of life of users/citizens. This could be through reduced cost of living, facilitated by reduced cost of a service, such as mass transit that may reduce the cost of commuting and save time.</td>
</tr>
<tr>
<td></td>
<td>A project could also substantially improve part of a citizen’s life through a cleaner environment, such as a waste collection and treatment facility. The impact or outcome of the project can aid a practitioner in making comparative assessments to understand the importance of the project in a citizen’s life, that is, livability.</td>
</tr>
<tr>
<td>Title</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Identification of Service Need | Infrastructure assets are enablers for the government to meet its service delivery obligations, and not an end in themselves. Hence, the user needs to identify what problem the project is trying to solve, or what service needs to be addressed by the project, while answering the questions.
This highlights the gap between service need and present level of service delivery.
Indicative examples of the existence of service deficiency include the following:
(i) Only 50 percent of the city gets drinking water for six hours a day.
(ii) Unaccounted-for water is 60 percent.
(iii) There is traffic congestion.
(iv) Travel time from point A to point B has doubled in the past 10 years.
This is the service outcome expected from a project. The outcome is the effect of the project on the community and helps define the scope of the project. For example, the project could target one or a combination of service outcomes, such as:
(i) Provide 100 percent connectivity to all users.
(ii) Achieve at least 80 percent collections.
(iii) Meet specified quality standards, such as 24x7 water supply of specified health standards and water pressure.
(iv) Reduce average travel time from point A to point B to 15 minutes.
It is a good practice to consult prospective users and key stakeholders while preparing a project. This will ensure that the user needs are well reflected in defining the service needs to be addressed by the project, as well as specifying the desired service outcomes and then cross-checking whether the proposed service outcomes will indeed meet user needs. |
| Assessment of Service Delivery Options | There may be a range of technical solutions available for addressing the service need. The technical solutions may include any one or a combination of the following options:
(i) *Existing asset options*. Consideration should be given to whether existing assets held by the government can be used. This may involve rehabilitation, renewal, enhancement, replacement, adaptation, or reconfiguration of assets.
(ii) *Non-asset options*. Service needs may be met without creating additional assets by reconfiguring the means of service delivery, developing initiatives to manage demand more effectively, or better utilization of existing assets.
(iii) *New asset-based options*. New investment in assets may be developed.
In practice, all options for addressing the service need are analyzed. The assessment should factor in the ability of the option to meet the service need in terms of capacity, |
Scope of the Project

This is the project’s description, in technical terms, including a detailed description and requirements for the most important aspects of the project.

The scope of a project needs to define the technical outputs expected from the project, the market services expected in the location/geography, the users to be serviced, and so forth. It needs to cover the life of the project, from the construction of the project to its operations and maintenance requirements, measurable and verifiable outputs at each stage of the project, and so forth. Output is defined as a measure of services of the project; it addresses the service deficiency and the desired outcome of the project.

A well-scoped project is clearly articulated, unambiguous, and not subject to multiple interpretations of the expectations from the project.

II. Preliminary Feasibility

This covers a preliminary assessment to gauge whether the project can be technically delivered in an efficient and effective manner to achieve the project outputs. It will include an early analysis of the project scope, technical design requirements, performance requirements, site issues, cost estimates, and related preparatory works. All available information relating to the engineering design and technical execution aspects of the project should be analyzed.

Typically, the following aspects will be covered in a technical prefeasibility:

- Appropriateness of the technology
- Comparison of the scope of the project with other similar projects
- Assessment of the completeness of the project cost estimates vis-à-vis the project delivery and output specification requirements
- Analysis of life-cycle costs for major project components, whether reasonable and affordable
- Site suitability based on geotechnical requirements, project requirements, and regulatory risks
- Site accessibility from the perspective of construction management, for example, assessing the availability of borrow earth/aggregates, site for pre-casting structural components, site flexibility to manage construction in brownfield projects, and so forth
- Availability of skilled workers for construction, operations, and maintenance of the project.

Clarifications on questions raised
<table>
<thead>
<tr>
<th>Title</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Well-established technology. The intent is to prefer technologies that are in wide use and have a proven track record of success in similar projects and regions or terrains similar to the one related to this project. Untested and new technologies would potentially pose a greater risk to the project.</td>
<td></td>
</tr>
<tr>
<td>2. Comparability of the project’s scope of work to similar projects. This relates to the tasks and outputs to be delivered under the project in terms of physical works, facilities, infrastructure, and services, and in compliance with specified and applicable performance levels and standards. The question seeks to ascertain whether the scope of work of the proposed project is similar to those of other similar projects (preferably within the country or region).</td>
<td></td>
</tr>
<tr>
<td>3. Output specifications. These relate to the consistency between the project’s deliverables in terms of the project’s physical works, facilities, and services with the technical cost estimates for such output specifications.</td>
<td></td>
</tr>
<tr>
<td>4. Life-cycle costs relate to all costs that the project will incur throughout its life, from the development, construction, operations, and exit phases (as applicable to the particular PPP format). This typically includes not only capital expenditure, but also operating period expenses and termination and exit phase costs.</td>
<td></td>
</tr>
<tr>
<td>5. Site suitability relates to the assessment of the site from the project’s location standpoint and its suitability in terms of the project’s requirements during the design, construction, operations, and maintenance phases.</td>
<td></td>
</tr>
<tr>
<td>6. Site accessibility during construction is critical, especially if the project is located in a remote area. There are challenges in relation to transportation and movement of construction equipment, material, and people. Remoteness of a site can substantially increase the construction cost and might make the project financially unviable or unsustainable due to site-related challenges.</td>
<td></td>
</tr>
</tbody>
</table>

At this stage, a preliminary analysis of environmental aspects will include an understanding of the project’s impact on key environmental aspects, environmental scoping, outlining environmental management work plans for downstream activities, and other related works that would feed into a comprehensive environmental impact assessment that would be undertaken at the detailed engineering and design stage. For example, in the case of World Bank safeguard policies, one or more of the following policies may be triggered in a PPP project:

(i) Environmental assessment (OP/BP 4.01)
(ii) Natural habitats (OP/BP 4.04)
(iii) Pest management (OP 4.09)
(iv) Physical cultural resources (OP 4.11)

4 World Bank Operational Policy (OP)/Bank Procedure (BP).
(v) Involuntary resettlement (OP/BP 4.12)
(vi) Indigenous peoples (OP 4.10)

In addition, national or international standards on labor and occupational health and safety may be applicable. These studies are an initial analysis of positive and negative impacts of the project during construction and operations, as applicable.

Any potential negative impact on the environment, especially on natural resources such as bodies of water or protected land such as forests, and impact on air, including potential unmanageable emissions, must be identified early. Delays with respect to obtaining forest, environmental, and wildlife clearances and so forth from the respective departments should also be factored in, as they may lead to significant delays during the implementation stage.

Environmental prefeasibility is particularly critical in the case of development of power plants based on conventional fuels, setting up ports to handle hazardous or chemical cargo, or industrial parks or waste treatment facilities.

Greenhouse Gas Emissions and Sustainability

For clarification related to GHG, please refer to the notes in the Basic Project Data sheet.

Greenhouse gas emissions. Increased release of carbon dioxide and other GHGs, primarily attributable to burning fossil fuels, has led to their increased concentration. This in turn has led to the greenhouse effect, which is potentially increasing Earth's temperature at the surface and in the atmosphere, which is disrupting short-term weather patterns and causing long-term climate change. This can have several unintended consequences, such as flooding from excess rain in certain parts of the world, drought from lack of rain in others, ocean acidification, changing crops and crop production, and rising sea level. Reducing the emission of GHGs now will help mitigate the effects of climate change in the future.

Unavoidable carbon dioxide–equivalent emissions can be countered by carbon sequestration, in which carbon dioxide is removed from the atmosphere and deposited in a reservoir, typically deep within the Earth where it cannot reach the atmosphere. Sequestration can also come in the form of planting new forests, which absorb and use carbon dioxide for their growth. To fulfill this credit, a streamlined life-cycle assessment needs to be conducted in accordance with the International Organization for Standardization (ISO) 14040 and ISO 14044 standards, when the project's Detailed Project Report is being prepared prior to the construction phase.

Expected Reduction in GHG Emissions Once the Project Is Completed

Net carbon negative. The completed project is carbon negative (that is, it sequesters more carbon than it produces). Using a completed life-cycle carbon assessment, the project team works to design the project so that it is carbon negative through extensive use of renewable energy and carbon sinks.
<table>
<thead>
<tr>
<th>Title</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon neutral.</td>
<td>The completed project is carbon neutral (does not produce any net carbon emissions, that is, a 100 percent reduction). Using a completed life-cycle carbon assessment, the project team works to design the project so that it is carbon neutral through extensive use of renewable energy and carbon sinks.</td>
</tr>
<tr>
<td>Potential reduction possible.</td>
<td>There is potential for at least 20 percent GHG reduction, from the original base case scenario of the project. In this instance, it is reasonably expected that the project team will improve the project’s design and thereby achieve a reduction in GHG emissions from the original base case. For example, if in the base case the project would have 100 units of GHG emissions, in the improved project design case the GHG emissions are 80 units. Then it can be stated that by improving the project's design, the potential GHG emissions from the project stand to be reduced by 20 percent.</td>
</tr>
<tr>
<td>Resilience and Adaptability to Climate Change</td>
<td>Infrastructure projects that are designed for today’s conditions may not be able to function adequately under altered conditions in the future. Climate change will likely lead to changes in weather patterns and sea levels. Projects should be designed to withstand a range of conditions that may result from climate change, such as changes in temperatures, humidity, precipitation, seasonal hydrology, flooding, and increased sea levels. Changing climate conditions can have drastic impacts on the site. For example, desertification is a significant concern throughout the world, as water availability and vegetative cover decrease and overgrazing, overharvesting, and mismanagement of vegetative cover increase. In this context, it is vital to design projects that suitably address resiliency and adaptive capacity in relation to climate change. “Resilience” refers to the ability of a system to recover quickly and cost-effectively following an extreme event. “Adaptive capacity” means the system has the ability to respond to changing conditions over time to withstand them. Flexibility is a key part of adaptive capacity. Redundancy, possibly from backup systems or decentralized distributed networks, helps systems remain functional even if one component fails. Strategies for managing long-term changes may include the following: (a) Structural changes—expand the range of conditions in which the system can function. (b) Decentralized systems—these depend on many small facilities instead of a single large facility; distributed networks spread risk. (c) Natural systems—choose environmentally friendly solutions for infrastructure provision (for example, using wetlands to treat storm water also helps protect against flooding).</td>
</tr>
<tr>
<td>Title</td>
<td>Explanation</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>(d) Alternative supply options</td>
<td>identify alternative methods or locations for resources that are important for an infrastructure project (water sources, energy sources, materials, and so forth).</td>
</tr>
<tr>
<td>(e) Adaptive capabilities</td>
<td>include ways for the system to learn or change over time to be more prepared to deal with altered conditions.</td>
</tr>
<tr>
<td>(f) Site selection</td>
<td>choose sites that are less vulnerable to potential impacts of climate change (farther from coasts to reduce the impact of increasing sea levels, at higher elevations where flooding is less likely, and so forth).</td>
</tr>
</tbody>
</table>

Short-term hazards could include a variety of events that may or may not be related to climate change. These include natural hazards, such as earthquakes, tsunamis, floods, fires, wild fires, and storm surges, and human-induced hazards, such as hazardous material spills, terrorist attacks, epidemics, and biohazards.

Managing and preparing for short-term hazards helps to secure the longevity of infrastructure projects and protect investments and secure the well-being of the surrounding community. Key components for resiliency to hazards include the ability to withstand hazards (for example, through physical fortification against flooding or hurricanes) and the ability to adapt to hazards.

Adapting to a hazard can include redundancy through backup systems or decentralized distribution networks, which help systems to remain functioning even if one component fails.

Source: Adapted from the Envision Manual, https://sustainableinfrastructure.org/.

Envision is a guidance and rating system for sustainable infrastructure. It was developed by the Institute for Sustainable Infrastructure in partnership with the Zofnass Program at the Harvard Graduate School of Design. The Institute for Sustainable Infrastructure was founded by the American Council of Engineering Companies, the American Public Works Association, and the American Society of Civil Engineers. For further details, please refer to the Envision Manual.

<p>| Social Prefeasibility | Although a comprehensive social impact assessment is advisable at the feasibility study and detailed engineering design stage, at this stage a preliminary analysis of social aspects is suggested. The preliminary social analysis could include early identification of the project’s influence area and the people who will be affected by the project. It is suggested that the project adopt international standards on social impact assessment and management, such as those of the World Bank and International Finance Corporation. These international standards espouse a wider definition of project-affected parties and stakeholders, and measures to mitigate potential negative social impacts and encourage greater integration of communities in project design. It should be assessed whether the project will result in displacement of people, loss of livelihoods... |</p>
<table>
<thead>
<tr>
<th>Title</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>of a section of society, or an economic impact that will change people’s quality of life (this can be positive or negative).</td>
<td>Social impact mitigation may include rehabilitation and resettlement for people affected by the project. Interventions to protect social impacts should (i) Be informed and must take into account the key relevant social issues (ii) Incorporate a participation strategy for involving a wide range of stakeholders. Such social safeguard measures could be part of the contractual obligations of the concessionaire or part of the project preparatory works for the contracting agency. The preliminary social assessment would need to assess the support of the affected communities and other key stakeholders for the project, based on consultations, political support, and/or support for such project initiatives in the past. The assessment will need to conclude on a preliminary social management strategy that is sufficiently detailed, provide information on the approvals required, and comment on the timelines for obtaining such approvals.</td>
</tr>
<tr>
<td>Economic Prefeasibility</td>
<td>Economic analysis is a cost-benefit analysis of the project that seeks to quantify the net benefits for society after factoring in all the direct and indirect costs of the project. It is a key metric for the public sector to decide whether to proceed with a project or not. This is done with a long-term perspective, projecting costs and benefits through the analysis period. The period considered must be in line with the useful economic life of the infrastructure asset. The review should conclude on the completeness of the costs and benefits from the project, the reasonableness of the assumptions for the direct and indirect costs and benefits, and whether the project is economically sound with an economic internal rate of return (eIRR) that is greater than the government’s threshold eIRR.</td>
</tr>
<tr>
<td>Financial Prefeasibility</td>
<td>A preliminary financial analysis is designed to give an early indication of a project’s potential financial viability. The analysis covers projecting income, expenses, and cash flows over the project life cycle. The cash flow takes into consideration all capital funding, capital expenditure, income and operational expenses, and debt servicing and investor returns. A project is considered feasible if the benchmark metrics are considered above their thresholds on a sustained basis (such as the project’s internal rate of return and debt service coverage ratio) and in multiple scenario analysis (typically, three to five scenarios should be developed with realistic variations of key assumptions).</td>
</tr>
<tr>
<td>Title</td>
<td>Explanation</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>PPP Project Screening and Analytics Tool (PSAT) User Guide</td>
<td>An important factor in the analysis is the source of project revenue, such as user charges, availability payments, or a hybrid (a combination of user charges and availability payments). In each of the cases, the revenue projections need to be backed by realistic assumptions, preferably based on historical data and independent studies. Care should be taken to ensure that overoptimistic growth rates are not considered while making projections over the long term. In the case of user charges, the revenue assessment will need to be backed by demand studies. The affordability of user charges could be assessed from willingness-to-pay surveys. In the case of availability payments, the assessment needs to cover the ability of the counterparty to make payments and the arrangements within the counterparty to ensure that payments can be made on a sustainable basis. The financing assumptions for the project will need to be realistic and supported by evidence based on the country’s experience with funding similar infrastructure projects in the past. The debt-to-equity ratio, interest rates, debt tenure assumptions, cost of equity, and so forth would need to be benchmarked to similar projects that have achieved financial closure in the recent past.</td>
</tr>
<tr>
<td>Legal Prefeasibility</td>
<td>At this stage, a basic level of legal analysis is recommended. The assessment will need to cover the legal feasibility of sources of revenue for the project, enforcement of lenders’ rights, foreign exchange restrictions that may affect the financing of the project, and so forth. In the case of user charges, the prefeasibility will need to assess whether user charges can be levied by the PPP operator and assess regulatory frameworks or proposed contractual frameworks that provide a basis for tariff setting and periodic reviews. For availability payment types of projects, the prefeasibility will need to assess the modalities for assuring payments by the contracting agency through dedicating revenues to service the payment obligations. Assess legislation and guidelines related to enforcement of lenders’ rights of substitution, step-in rights, and other recourse to lenders to recover their outstanding loan in the event of default. Assess if there are any restrictions to attracting foreign investment for the project in the form of debt and equity and repatriation of returns to equity investors outside the country. The assessment will need to conclude on the preliminary legal feasibility for the project; identify legal barriers, if any; and recommend a plan to address these barriers through appropriate executive action or legislative reforms.</td>
</tr>
<tr>
<td>III. Risk Assessment</td>
<td></td>
</tr>
</tbody>
</table>

73
<table>
<thead>
<tr>
<th>Title</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of Delay in Land Acquisition</td>
<td>This refers to the risk that the project site will be unavailable or unable to be used within the required time or in the manner or cost anticipated, or the site will generate unanticipated liabilities due to existing encumbrances and native claims being made on it.</td>
</tr>
<tr>
<td></td>
<td>The assessment will need to form an understanding on the land-related risks with respect to the quantum of land to be acquired, the legislative preparedness of the procuring agency to acquire land, budget availability to pay for the acquisition, and so forth. The assessment will also cover risks related to the nature of land being acquired with respect to resettlement of existing landowners, protected or notified lands, forest or eco-sensitive lands, and so forth.</td>
</tr>
<tr>
<td></td>
<td>The assessment will need to assess the preparedness of the contracting authority to provide 100 percent unencumbered land for the project in a timely manner.</td>
</tr>
<tr>
<td>Financing Risk</td>
<td>This refers to the risk that sufficient finance will not be available for the project at reasonable cost (for example, due to changes in market conditions or credit availability), resulting in delays in a project’s financial closure.</td>
</tr>
<tr>
<td></td>
<td>This will cover an assessment of financial closure of similar projects in the country or region, financiers who may be interested in PPPs, and appraisal of other potential factors that may delay or impact raising finances for the project in a timely manner.</td>
</tr>
<tr>
<td>Design and Construction Risk</td>
<td>Design Risk. This refers to the risk that the proposed design will be unable to meet the performance and service requirements mentioned in the output specification. It can result in additional costs for modification and redesign.</td>
</tr>
<tr>
<td></td>
<td>Construction Risk. This refers to the risk that the construction of assets required for the project will not be completed on time, budget, or to specification. It may lead to additional raw material and labor costs, as well as increase in the cost of maintaining existing infrastructure or providing a temporary alternative solution in case of delay in provision of the service.</td>
</tr>
<tr>
<td></td>
<td>This will cover an assessment of technology risks, site-specific risks and construction challenges thereof, and sourcing of skills for constructing and operating the project. It includes the ability of the private sector partner to manage efficiently the design, construction, and commissioning risks by allowing engineering procurement and construction (EPC), equipment suppliers, or equivalent arrangements wherein EPC (or similar contractors) will take on cost, schedule, and performance risk through a “date-certain,” fixed-price lump sum, turnkey contract. It also includes the ability of the private sector to include a strong system of safeguards, incentives, and liabilities to manage contractor and subcontractor performance, as well as an adequate warranty and defects liability period to manage any construction-related challenges.</td>
</tr>
<tr>
<td>Title</td>
<td>Explanation</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Operations and Maintenance Risk</td>
<td>This refers to risks associated with the need for increased operations and maintenance (O&M) costs over the term of the project to meet performance requirements. This will cover an assessment of the O&M scope of the PPP, that is, whether it is clearly defined, with output standards that are clearly measurable and verifiable; sourcing of skills for managing O&M; and the ability of the PPP to manage this risk through back-to-back arrangements in O&M contracts and warranties on the performance of subcontractors.</td>
</tr>
<tr>
<td>Market and Demand Risk</td>
<td>This refers to the risk that demand for a service will vary from the level that was initially projected, such that the total revenue derived from the project over the project term will vary from initial expectations. Demand or usage risk emanates from optimism bias in traffic or income projections and two possible situations: (1) delay in ramp-up of usage or demand, or (2) usage or demand levels remaining well below project estimates over a long period of time. There could be several underlying reasons for these situations to come up, such as a general economic downturn, competition within the sector and beyond, changes in target market composition or demographics, technical obsolescence or innovation, and shifts in industry activity or focus. These should be critically examined while projecting usage volumes and revenues. This risk is at the heart of user-pay structures and should generally be borne by the private party, with adequate government support measures to address extreme situations.</td>
</tr>
<tr>
<td>Offtaker Risk</td>
<td>This refers to the risk where payments are to be received from government counterparties, such as availability payments or output-linked payments. The risk of timely and adequate payments is driven by the creditworthiness and financial position of the government counterparty. The credibility of the government agency to make payments as per the contract and on time is assessed here. Any payment mechanism by the government should be supported by identified income sources or budget line provisions; the private sector partner needs to be assured of the availability of funds with the government counterparty to make payments. This will also cover assessment of creditworthiness of the government counterparty reflected through sovereign credit ratings, debt-to-GDP ratios, debt service to revenue income, and so forth. Often lenders require putting in place an adequate liquidity and payment security mechanism, such as provisions to create a debt service reserve account, escrow arrangements, payment guarantees or sovereign guarantees, letters of credit, and similar credit enhancement arrangements.</td>
</tr>
<tr>
<td>Title</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Foreign Exchange Risk</td>
<td>This refers to the risk that could arise from increased payment obligations for the PPP due to depreciation of the local currency vis-à-vis the foreign currency deployed to fund the capital and revenue expenditures for the project. The assessment will cover foreign currency payment obligations of the project toward interest payments and repayment of foreign debt, and imports of raw materials for the project from international markets, such as imports of coal, gas, fuel for power projects, and so forth. The mitigation measures to manage the risk could include hedging the risks through forward contracts or options on payment obligations, assessment of the mix of foreign exchange and local currency earnings from the project, and availability of foreign exchange guarantees from the contracting authorities to mitigate this risk.</td>
</tr>
<tr>
<td>Environmental and Social Risk</td>
<td>Environmental and Social Risk refers to the risks being borne by the project on account of environmental and social impact management. The risk could result in negative outcomes for the environment or society and increase the unanticipated costs for the project company. Primarily, this risk is a design and construction phase risk and should generally be borne by the private partner. A notable exception is preexisting contamination. When there has been an existing operation, the government usually accepts responsibility for preexisting environmental problems (for example, site contamination for a power plant or waste dump). Environmental risks may also affect the O&M phase with increased management costs (for example, noncompliance with environmental legislation that is detected during operations or changes in environmental law). Social risks are related to issues of project-affected people. While a detailed environmental and social impact assessment will be expected at the detailed design and engineering stage, it is recommended that an early-stage analysis of potential environmental and social impact issues should be undertaken during the preliminary analysis stage, preferably as per international performance standards (please refer to the Preliminary Feasibility section). In addition, there should be suitable contractual provisions to manage preexisting environmental and social risks, and any unexpected factors.</td>
</tr>
</tbody>
</table>

IV. PPP Suitability

Value for Money | A PPP represents VFM, implying cost savings enjoyed by the public sector on a whole-of-life-cycle basis. VFM would include qualitative and quantitative approaches to assess a range of project outcomes not only in terms of price, but also increased benefits to the end-users, greater certainty of the financial outcome, assets and services delivered at a specified level, and consideration of long-term service needs. |
Drivers of VFM

Several qualitative factors contribute to VFM, including the following:

- **Project scale.** A large project can potentially lead to economies of scale.

- **Longer project duration.** This provides an opportunity for the private sector to manage costs optimally and recoup its investments.

- **Adequate integration of services.** This provides greater incentive for the private sector to have a longer-term view on service delivery, optimize costs, and benefit from efficiency gains. The idea is not to encourage full integration, but rather an adequate level of integration that optimizes the whole-of-life-cycle costs. For example, under the United Kingdom’s Private Finance 2, certain auxiliary services (soft services: cleaning, catering, pest control, laundry, and mail; other common services: information and communications services, telephony, receptionist, health, and safety) have now been excluded from public finance initiative contracts on the grounds that they were being costed at rates much higher than what the public sector was procuring under traditional public procurement. Hence, the notion of an “adequate” level of integration as against full integration is understood to be more beneficial. More information on Private Finance 2 can be accessed at https://www.gov.uk/government/publications/private-finance-2-pf2.

- **Opportunities for cost reduction.** It is expected that the private sector has better asset management skills than the public sector and is well-incentivized to realize efficiency gains from operating assets.

- **Opportunities for increasing revenue generation.** It is expected that the private sector will have better marketing skills for efficiently increasing asset utilization and asset realization by increasing the usage of the facility and also exploring alternative revenue sources.

- **Linking remuneration to the private sector to performance on measurable and verifiable outputs.**

Quantitative VFM analysis should seek to quantify the incremental net benefit over costs vis-à-vis private sector delivery and risk-adjusted public sector delivery. VFM compares the proportion of cost savings between a project that is delivered by the public sector, that is, a risk-adjusted PSB, with project delivery via a PPP. The VFM percent = (cost of risk-adjusted PSB – cost of PPP) / cost of risk-adjusted PSB. The quantitative VFM assessment will need to be supported by assumptions that are realistic and reasonable. It is a good practice to benchmark assumptions and data for VFM analysis with outcomes on similar projects that were implemented in the past.

Scenario analysis for VFM. Given that there is high uncertainty in relation to the basic assumptions, often practitioners conduct simulations and scenario analysis to generate different ranges of outcomes based on changes in assumptions, to examine whether there is VFM above the threshold VFM percentage in the stress case scenarios.
<table>
<thead>
<tr>
<th>Title</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The threshold VFM percentage is the minimum expectation of the government below which the government would be neutral if the project were taken up for delivery by the public sector or the private partner. Usually, this reference VFM is taken as 10 percent. The approach to structuring a project should be to look at an optimal VFM that the private sector can provide. These VFM solutions could emerge through permutations and combinations of project scope, the qualitative factors mentioned above, and quantitative VFM analysis, without a bias toward a particular form of delivery.</td>
<td></td>
</tr>
<tr>
<td>Market Appetite</td>
<td>An effective market sounding exercise provides an opportunity for a structured dialogue between the private and public sectors in the early stages of the PPP process. This not only tests the viability of the project’s details, but also elicits feedback on how aspects of the project should be defined to ensure private sector participation and foster competition. The prefeasibility exercise should capture the potential investor’s perspective of the project, the private sector’s value drivers, and the main financial and operational constraints companies might face during the provision of the infrastructure and services.</td>
</tr>
<tr>
<td>V. Fiscal Affordability</td>
<td>Fiscal commitments for PPP projects are the government’s obligations to make payments to the private sector, constituting the whole or part of the remuneration of the private party, a means to share risk, or a combination of the two. Typically, fiscal commitments may be required to: (1) make PPP projects viable, when economically viable projects are not financially viable at an affordable level of user charges alone, or where user charging may not be desirable or practical; and (2) achieve an appropriate risk allocation, by ensuring that each party bears the project risks they are best able to manage efficiently. Allocating too much risk to the private party may make it expensive or impossible to raise finance. Unless these commitments are managed well, the potential advantages of a PPP can be eroded, and the government can risk building up significant fiscal exposure. On the one hand, uncertain payment obligations expose the government to fiscal risk that can create budgetary uncertainty and may put public debt on an unsustainable path. On the other hand, uncertainty among private partners as to whether the government will be able to honor its commitments promptly can undermine the VFM created by allocating risks well. Fiscal commitments can take the form of direct or contingent liabilities. Direct liabilities or direct commitments are those where the need for payment is known. These could include an upfront capital payment or regular payments (such as availability payments or operational subsidies) over a specified period of the contract. Contingent liabilities or</td>
</tr>
</tbody>
</table>
guarantees are those for which payment is needed only if some uncertain future event or circumstance occurs, so the occurrence, value, and timing of a payment may all be unknown when the government takes on the obligation. Collectively, they are termed as fiscal commitments and constitute a form of government support measures.

The process of analysis to assess the extent of fiscal support from the government would include the following:

• A Preliminary Feasibility study (PFS) would recommend that the project requires specified fiscal commitments to make it financially viable and potentially bankable.
• The PFS considers all options to increase efficiency in project scoping and that there is no further reduction possible, that is, to ascertain that the same level of service delivery needs cannot be met with a reduced scope and scale of the project.
• The PFS adequately examines all options to increase project revenues through user charges and/or third-party revenue sources that would be socially and economically acceptable to the users and the government.
• The PFS includes an independent assessment of market demand, including comprehensive justification of major assumptions and key findings, and the project revenues are considered realistic.
• The PFS considers all areas to optimize capital and operating costs and establishes a strong case for their reasonableness.
• The PFS recommends optimal risk-sharing between the government, implementing agency, and investor(s).
• The PFS concludes that the project is likely to be technically, legally, financially, environmentally, and socially feasible and bankable, with the desired level of fiscal commitments.

When a project goes into tender, the direct fiscal support required from the government is made the bid variable for the project, while keeping all the other project Parameters fixed. This ensures that there is competitive pressure in market determination of government support for the project. For example, India’s viability gap financing policy requires that the viability gap financing support required for the project is the bid variable, and the bidder quoting the lowest viability gap financing support is selected as the preferred bidder.

Quantification of Fiscal Support

With respect to direct commitments, the typical metrics include projections of multi-year payments and aggregations in terms of nominal and present value, computed at an appropriate discount rate (typically, the government’s cost of funds).

Budgetary ceilings are limits on exposure to direct and indirect fiscal commitments to PPPs that governments impose to restrict their fiscal exposure to PPPs. Depending on the nature of the fiscal commitments that the government seeks to provide, different ceilings could be established. For example, if payments are in the form of cash
<table>
<thead>
<tr>
<th>Title</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>subventions during the construction period or for a prespecified number of early years, the government could consider an absolute ceiling amount, specified in applicable currency over aggregate payments to be made for respective planning periods (this could be consistent with, say, a Medium-Term Expenditure Framework period of three to five years or a public investment planning period, which is usually five to seven years) and subsequent periods, as applicable to the overall duration of the fiscal commitments tenure. Some governments prefer to limit annual payments to a percentage of government expenditure or a Medium-Term Expenditure Framework planning period (the sum of annual payments ≤ a specified percentage of government expenditure over the same period). In the case of guarantees or contingent liabilities (arising from nontermination events), some governments prefer placing a ceiling on maximum annual payments or maximum estimated annual payments linked as a percentage of GDP (a maximum estimated or absolute annual payment less than or equal to a percentage of GDP or as a percentage of government expenditure or public debt). The fiscal significance has been defined as 0.25 percent of the nominal GDP. This input assumption can be changed based on the government’s acceptance of risk exposure. Usually, any event that has a potential impact is considered as 0.5 percent; those exceeding 1 percent would be considered high.</td>
</tr>
</tbody>
</table>

VI. Institutional Capability

Institutional Capacity

The institutional capacity of the government refers to the capacity of the contracting agency to develop and manage the project PPP. To develop a PPP successfully, the contracting agency needs to have personnel in its departments with the capability to manage a PPP, and available for deployment on the project on a dedicated basis. Departments with experience in executing PPPs would be at an obvious advantage, provided that learning from past PPPs has been incorporated into the current project and the right personnel have been chosen for the project.

The focal person for PPP refers to an officer from the department or an advisor appointed by the contracting authority to support them on the project PPP. It is expected that this person has capabilities in the area of PPPs and has executed similar projects in the past. This person may have an advisory role in the project or may be a senior officer with substantial decision-making powers to guide the process.

Appointing transaction advisors to manage the PPP process is a good practice. Transaction advisors conduct prefeasibility and feasibility studies, structure a project PPP, and support the contracting agency in the procurement process and thereafter in contract negotiations.
<table>
<thead>
<tr>
<th>Title</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparedness of the Contracting Agency</td>
<td>Project preparedness is the amount of rigor put in by the contracting agency to think through the entire project development phase, leading to procurement of the private sector partner and signing of the contract. At a high level, it could include a road map with timelines and identified responsibilities to manage the process. The plan should preferably include subplans for major project items like environmental approvals, communication strategies and plans, social impact mitigation measures, and land acquisition. Adequate funding allocated to these activities also indicates a high level of preparedness and intent of the contracting agency to go ahead with the PPP procurement. The contracting agency should be aware of the licenses, permits, approvals, and so forth that are required for undertaking the project, and should identify the concerned departments and agencies responsible for providing these permissions and approvals.</td>
</tr>
<tr>
<td>Project Execution Capability of the Contracting Agency</td>
<td>Project execution capability refers to the capability of the contracting agency to develop, operate, and maintain the project on its own through the normal procurement route. This indicates whether the agency has the full range of skills with a department to execute such projects. This is especially important in the context of social sector projects like hospitals, sports, and education facilities; contracting agency officers are mostly adept in operating these facilities but lack skills in constructing them. Understanding the skill gaps, supplementing them through secondment from other departments, and appointing advisors would help in effective project execution.</td>
</tr>
</tbody>
</table>
6.2 Data Tables and Troubleshooting

The following lists the precalibrated data points in the PSAT.

A. List of Prerequisites

<table>
<thead>
<tr>
<th>No.</th>
<th>List of Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Is the project derived from a national plan or other medium- to long-term strategic document that establishes development priorities at the highest levels of the government?</td>
</tr>
<tr>
<td>2</td>
<td>Is the project likely to be economically sound and have direct benefits that are significantly greater than the costs?</td>
</tr>
<tr>
<td>3</td>
<td>Do sector laws, regulations, or policies allow private sector participation in the project?</td>
</tr>
</tbody>
</table>

B. List of Deal Breakers

<table>
<thead>
<tr>
<th>No.</th>
<th>List of Deal Breakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Is there a clear articulation and substantiation of the service deficiency?</td>
</tr>
<tr>
<td>2</td>
<td>Has there been an assessment of all possible technical solutions to address the identified need?</td>
</tr>
<tr>
<td>3</td>
<td>Are the technical cost estimates in line with required output specifications?</td>
</tr>
<tr>
<td>4</td>
<td>Is the proposed site accessible with any potential challenges during construction being manageable?</td>
</tr>
<tr>
<td>5</td>
<td>Will the project have any significant negative impact on natural resources or protected land?</td>
</tr>
<tr>
<td>6</td>
<td>Is the project likely to be socially sustainable or have manageable social impacts?</td>
</tr>
<tr>
<td>7</td>
<td>Is there support for the project from affected communities and other key stakeholders?</td>
</tr>
<tr>
<td>8</td>
<td>Will the impacts of direct and contingent liabilities of the project be within an acceptable level for the government?</td>
</tr>
<tr>
<td>9</td>
<td>Are the life-cycle costs for major components of the project reasonable and affordable?</td>
</tr>
<tr>
<td>10</td>
<td>Will the project have a significant adverse impact on the health or quality of life of users, workers, and the local population?</td>
</tr>
<tr>
<td>11</td>
<td>If applicable, is there a plan to address the legal barriers through appropriate executive action or legislative reforms?</td>
</tr>
<tr>
<td>12</td>
<td>Are there financiers who will express or have expressed interested in the PPP?</td>
</tr>
</tbody>
</table>
C. Weights of Parameters and Sub-Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Sub-Parameter</th>
<th>Parameter Weight</th>
<th>Sub-Parameter Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Strategic Suitability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Alignment with Government Priorities</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Identification of Service Need</td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Assessment of Service Delivery Options</td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Scoping of the Project</td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>II</td>
<td>Preliminary Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Technical Prefeasibility</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Environmental Sustainability</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Social Sustainability</td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Economic Prefeasibility</td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Financial Prefeasibility</td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Legal Prefeasibility</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>III</td>
<td>Risk Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Risk of Delay in Land Acquisition</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Financing Risk</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Design and Construction Risk</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Operations and Maintenance Risk</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Market Risk and Demand Risk</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Offtaker Risk</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Foreign Exchange Risk</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Environmental and Social Risk</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td>IV</td>
<td>PPP Suitability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Value for Money</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Market Appetite</td>
<td></td>
<td>60%</td>
</tr>
<tr>
<td>V</td>
<td>Fiscal Affordability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Extent and Nature of Government Fiscal Support</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Quantification of Fiscal Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Institutional Capability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Institutional Capacity</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Preparedness of the Contracting Agency for the Project</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Project Execution Capability of the Contracting Agency</td>
<td>33%</td>
<td></td>
</tr>
</tbody>
</table>
D. Complexity Score Weights

<table>
<thead>
<tr>
<th>No.</th>
<th>Complexity Score</th>
<th>Complexity Score Weight</th>
<th>Question Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Financial Feasibility Complexity Score</td>
<td>70%</td>
<td>30%</td>
</tr>
<tr>
<td>II</td>
<td>eIRR Complexity Score</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>III</td>
<td>Land Acquisition Complexity Score</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>IV</td>
<td>Fiscal Affordability Complexity Score</td>
<td>67%</td>
<td>33%</td>
</tr>
<tr>
<td>V</td>
<td>Forex Risk Complexity Score</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>VI</td>
<td>Environmental Sustainability Complexity Score</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

E. Score Constraints for Sub-Parameter Responses

<table>
<thead>
<tr>
<th>Score Constraints for Sub-Parameter Responses in Case of High No, Uncertain, and/or Skipped Responses</th>
<th>>=</th>
<th><=</th>
<th>Forced Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the percentage of [negative, uncertain, and/or skipped] responses for a Sub-parameter is between</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.1%</td>
<td></td>
<td>75%</td>
<td>2</td>
</tr>
<tr>
<td>75.10%</td>
<td></td>
<td>90%</td>
<td>1.5</td>
</tr>
<tr>
<td>90.10%</td>
<td></td>
<td>100%</td>
<td>1</td>
</tr>
</tbody>
</table>
Score Constraints for Parameters

<table>
<thead>
<tr>
<th>Score Constraints for Risk Assessment, PPP Suitability, and Fiscal Affordability in a Case of Weak Score in One or More Sub-Parameters in the Parameter</th>
<th>Condition</th>
<th><=</th>
<th>Forced Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable only for Parameters – Risk Assessment, PPP Suitability, and Fiscal Affordability</td>
<td>If any sub-parameter score is</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Applicable only for Parameters – Risk Assessment, PPP Suitability, and Fiscal Affordability</td>
<td>If any sub-parameter score is</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Applicable only for Parameter – Risk Assessment</td>
<td>Any two or more sub-parameters have scores</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Applicable only for Parameter – Risk Assessment</td>
<td>Any two or more sub-parameters have scores</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Score Constraints for Potential Deal Breakers Triggered

<table>
<thead>
<tr>
<th>Overall Score Constraint for Potential Deal Breakers Triggered</th>
<th>>=</th>
<th>Forced Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the percentage of potential Deal breakers triggered (negative scores) is above</td>
<td>25%</td>
<td>2.0</td>
</tr>
</tbody>
</table>
6.2.1 Troubleshooting

The following are some issues commonly faced by users while using the PSAT. The approaches to address the issues are detailed in this section.

1. PSAT file opens in protected view mode

Error display observed:

Or

Remedy:

1) Click on Enable Editing.

2) Save the workbook to the local disk.

The Protected View function of Excel opens documents in read-only mode and disables editing functions. There are several reasons why documents are opened in read-only mode and all are for security measures. Documents that are considered "Files that originate from the Internet" are opened in Protected Mode by default. For the PSAT to be used correctly, the user must click on "Enable Editing" as shown above in the first image. However, users must ensure that the document is never in [Read-only] mode as shown in the second image. If so, the file must be saved to the local disk to continue using the Tool optimally.

2. Circular reference

Error display observed:

Remedy:

1) Click OK and continue using the Tool normally.
This Tool uses circular references because they make its functions repeat until a specific numerical condition is met. Iterative calculations are generally disabled in Excel. The above message appears when the file is opened for the first time, so the user should click on OK. The message will not appear again on future occasions.

3. **Active content (Macros)**

Error display observed:

![SECURITY WARNING](image)

Remedy:

1) Click on Enable Content.

This Tool is based on the use of Macros. When the user opens the file for the first time, the above message bar will appear, because by default, Microsoft Excel perceived that the active content may be harmful. The user can enable the active content of the file by selecting the Enable Content button, making this file a trusted document. When a user opens the file again, the message bar will not appear.

4. **Active content (Macros)**

Error display observed:

![BLOCKED CONTENT](image)

Remedy:

1) Save the workbook to the local disk.
2) Right click on the file and choose Properties.
3) Click on the Unblock button and then click Apply.
In the event that the user faces a security message as shown in the image, the user must save the file to the local drive or to a trusted file server. Once this step is done, when opening it, the normal "Enable Content" button will appear (Trouble shooting 3) where the user must continue with the steps detailed above.

5. Macros – Reference or Object error

Error display observed:

A text box error appears with “Reference or Object error” mentioned in it. It also includes buttons to end, debug, help, and so forth.

Remedy:

1) Click on the Developer tab in the top ribbon in MS Excel.
2) Click View Code.
3) In the Visual Basic for Applications (VBA) editor, click “References” on the Tools menu.
4) The following VBA Dialogue box appears:
5) One or more references will have an “X” with “MISSING: xxxx” next to it above dialogue box.
6) Click on the X box to clear the Missing library and click OK.
The World Bank Group provides assistance to governments in developing countries to improve access to infrastructure and basic services through public-private partnerships (PPPs). When designed well and implemented in a balanced regulatory environment, PPPs can bring great efficiency and sustainability to the provision of such public services as water, sanitation, energy, transport, telecommunications, healthcare, and education.

The World Bank Group’s unique value proposition rests with its capacity to provide support along the entire PPP cycle—upstream policy and regulatory guidance, transaction structuring advice, as well as financing and guarantees to facilitate implementation.